• Benjamin, S. G., K. J. Brundage, and L. L. Morone, 1994: Implementation of the Rapid Update Cycle. Part I: Analysis/model description. NOAA/NWS Tech. Procedures Bull. 416, 16 pp.

  • Brandes, E. A., R. P. Davies-Jones, and B. C. Johnson, 1988: Streamwise vorticity effects on supercell morphology and persistence. J. Atmos. Sci., 45, 947963, https://doi.org/10.1175/1520-0469(1988)045<0947:SVEOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 97–104.

    • Crossref
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., 2017: Tilting of horizontal shear vorticity and the development of updraft rotation in supercell thunderstorms. J. Atmos. Sci., 74, 29973020, https://doi.org/10.1175/JAS-D-17-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., and D. W. McCann, 1977: Relative environmental winds for 121 tornado bearing storms. Preprints, 10th Conf. On Severe Local Storms, Omaha, NE, Amer. Meteor. Soc., 413417.

  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59, 31783205, https://doi.org/10.1175/1520-0469(2003)059<3178:LANPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 20052029, https://doi.org/10.1175/1520-0493(1993)121<2005:TIOHON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1954: The types of air masses in which North American tornadoes form. Bull. Amer. Meteor. Soc., 35, 154165, https://doi.org/10.1175/1520-0477-35.4.154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gropp, M. E., and C. E. Davenport, 2018: The impact of the nocturnal transition on the lifetime and evolution of supercell thunderstorms in the Great Plains. Wea. Forecasting, 33, 10451061, https://doi.org/10.1175/WAF-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical investigation of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., R. L. Thompson, and R. Edwards, 2008: The optimal bulk wind differential depth and the utility of the upper-tropospheric storm-relative flow for forecasting supercells. Wea. Forecasting, 23, 825837, https://doi.org/10.1175/2008WAF2007007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402, https://doi.org/10.1146/annurev.fl.19.010187.002101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, https://doi.org/10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408429, https://doi.org/10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection, Part I: Simple, generalized analytic solutions. J. Atmos. Sci., 73, 14411454, https://doi.org/10.1175/JAS-D-15-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist convective thermals. J. Atmos. Sci., 75, 16991719, https://doi.org/10.1175/JAS-D-17-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-19-0243.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783801, https://doi.org/10.1175/WAF-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2017: How much does “backing aloft” actually impact a supercell? Wea. Forecasting, 32, 19371957, https://doi.org/10.1175/WAF-D-17-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020a: Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-19-0244.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and G. Mullendore, 2020b: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., and M. Xue, 2017: The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 74, 30553077, https://doi.org/10.1175/JAS-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma city supercell. J. Atmos. Sci., 71, 130154, https://doi.org/10.1175/JAS-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, and M. Colin, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 380 380 64
Full Text Views 143 143 17
PDF Downloads 184 184 20

The Influences of Effective Inflow Layer Streamwise Vorticity and Storm-Relative Flow on Supercell Updraft Properties

View More View Less
  • 1 Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 2 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 3 Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 4 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The relationship between storm-relative helicity (SRH) and streamwise vorticity ωs is frequently invoked to explain the often robust connections between effective inflow layer (EIL) SRH and various supercell updraft properties. However, the definition of SRH also contains storm-relative (SR) flow, and the separate influences of SR flow and ωs on updraft dynamics are therefore convolved when SRH is used as a diagnostic tool. To clarify this issue, proximity soundings and numerical experiments are used to disentangle the separate influences of EIL SR flow and ωs on supercell updraft characteristics. Our results suggest that the magnitude of EIL ωs has little influence on whether supercellular storm mode occurs. Rather, the transition from nonsupercellular to supercellular storm mode is largely modulated by the magnitude of EIL SR flow. Furthermore, many updraft attributes such as updraft width, maximum vertical velocity, vertical mass flux at all levels, and maximum vertical vorticity at all levels are largely determined by EIL SR flow. For a constant EIL SR flow, storms with large EIL ωs have stronger low-level net rotation and vertical velocities, which affirms previously established connections between ωs and tornadogenesis. EIL ωs also influences storms’ precipitation and cold-pool patterns. Vertical nonlinear dynamic pressure acceleration (NLDPA) is larger at low levels when EIL ωs is large, but differences in NLDPA aloft become uncorrelated with EIL ωs because storms’ midlevel dynamic pressure perturbations are substantially influenced by the tilting of midlevel vorticity. Our results emphasize the importance of considering EIL SR flow in addition to EIL SRH in the research and forecasting of supercell properties.

Corresponding author: J. Peters, jmpeters@nps.edu

Abstract

The relationship between storm-relative helicity (SRH) and streamwise vorticity ωs is frequently invoked to explain the often robust connections between effective inflow layer (EIL) SRH and various supercell updraft properties. However, the definition of SRH also contains storm-relative (SR) flow, and the separate influences of SR flow and ωs on updraft dynamics are therefore convolved when SRH is used as a diagnostic tool. To clarify this issue, proximity soundings and numerical experiments are used to disentangle the separate influences of EIL SR flow and ωs on supercell updraft characteristics. Our results suggest that the magnitude of EIL ωs has little influence on whether supercellular storm mode occurs. Rather, the transition from nonsupercellular to supercellular storm mode is largely modulated by the magnitude of EIL SR flow. Furthermore, many updraft attributes such as updraft width, maximum vertical velocity, vertical mass flux at all levels, and maximum vertical vorticity at all levels are largely determined by EIL SR flow. For a constant EIL SR flow, storms with large EIL ωs have stronger low-level net rotation and vertical velocities, which affirms previously established connections between ωs and tornadogenesis. EIL ωs also influences storms’ precipitation and cold-pool patterns. Vertical nonlinear dynamic pressure acceleration (NLDPA) is larger at low levels when EIL ωs is large, but differences in NLDPA aloft become uncorrelated with EIL ωs because storms’ midlevel dynamic pressure perturbations are substantially influenced by the tilting of midlevel vorticity. Our results emphasize the importance of considering EIL SR flow in addition to EIL SRH in the research and forecasting of supercell properties.

Corresponding author: J. Peters, jmpeters@nps.edu
Save