• Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, and L.-P. Wang, 2008a: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. W. Grabowski, 2008b: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615, https://doi.org/10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598, https://doi.org/10.1002/qj.49710644914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. E. Breidenthal, T. W. Choularton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41, 299304, https://doi.org/10.1175/1520-0469(1984)041<0299:TEOTMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641, https://doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136, https://doi.org/10.1175/1520-0469(1993)050<0120:CEACDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecchini, M. A., and Coauthors, 2017: Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: Introduction and potential applications. Atmos. Chem. Phys., 17, 14 72714 746, https://doi.org/10.5194/acp-17-14727-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., M. K. Yau, and P. Bartello, 2018: Turbulence effects of collision efficiency and broadening of droplet size distribution in cumulus clouds. J. Atmos. Sci., 75, 203217, https://doi.org/10.1175/JAS-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, https://doi.org/10.1175/JAS-D-12-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dávila, J., and J. C. R. Hunt, 2001: Settling of small particles near vortices and in turbulence. J. Fluid Mech., 440, 117145, https://doi.org/10.1017/S0022112001004694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, https://doi.org/10.1002/qj.1897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dodson, D. S., and J. D. Small Griswold, 2019: Droplet inhomogeneity in shallow cumuli: The effects of in-cloud location and aerosol number concentration. Atmos. Chem. Phys., 19, 72977317, https://doi.org/10.5194/acp-19-7297-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., M. Waruszewski, and H. Pawlowska, 2019: University of Warsaw Lagrangian cloud model (UWLCM) 1.0: A modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics. Geosci. Model Dev., 12, 25872606, https://doi.org/10.5194/gmd-12-2587-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. Tzivion, and Z. Leviv, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 33873399, https://doi.org/10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flow. J. Atmos. Sci., 62, 24512466, https://doi.org/10.1175/JAS3493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 44934499, https://doi.org/10.1175/JAS-D-14-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2020: Comparison of Eulerian bin and Lagrangian particle-based schemes in simulations of Pi Chamber dynamics and microphysics. J. Atmos. Sci., 77, 11511165, https://doi.org/10.1175/JAS-D-19-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234, https://doi.org/10.1175/2007MWR2283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunthe, S. S., and Coauthors, 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: Size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmos. Chem. Phys., 9, 75517575, https://doi.org/10.5194/acp-9-7551-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartman, C. M., and J. Y. Harrington, 2005a: Radiative impacts on the growth of drops within simulated marine stratocumulus. Part I: Maximum solar heating. J. Atmos. Sci., 62, 23232338, https://doi.org/10.1175/JAS3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartman, C. M., and J. Y. Harrington, 2005b: Radiative impacts on the growth of drops within simulated marine stratocumulus. Part II: Solar zenith angle variations. J. Atmos. Sci., 62, 23392351, https://doi.org/10.1175/JAS3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández Pardo, L., L. A. Toledo Machado, M. Amore Cecchini, and M. Sánchez Gácita, 2019: Quantifying the aerosol effect on droplet size distribution at cloud top. Atmos. Chem. Phys., 19, 78397857, https://doi.org/10.5194/acp-19-7839-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°. J. Atmos. Sci., 66, 35303562, https://doi.org/10.1175/2009JAS3107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., 2016: The effect of spurious cloud edge supersaturations in Lagrangian cloud models: An analytical and numerical study. Mon. Wea. Rev., 144, 107118, https://doi.org/10.1175/MWR-D-15-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., S. Raasch, and Y. Noh, 2015: Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM–LES approach. Atmos. Res., 156, 4357, https://doi.org/10.1016/j.atmosres.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., J. Kyrouac, and E. Keeler, 2014: Balloon-Borne Sounding System (SONDEWNPN). ARM user facility, accessed 5 April 2019, https://doi.org/10.5439/1021460.

    • Crossref
    • Export Citation
  • Hudson, J. G., and X. Da, 1996: Volatility and size of cloud condensation nuclei. J. Geophys. Res., 101, 44354442, https://doi.org/10.1029/95JD00192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaruga, A., and H. Pawlowska, 2018: libcloudph++ 2.0: Aqueous-phase chemistry extension of the particle-based cloud microphysics scheme. Geosci. Model Dev., 11, 36233645, https://doi.org/10.5194/gmd-11-3623-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., P. H. Austin, M. B. Baker, and A. M. Blyth, 1985: Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. J. Atmos. Sci., 42, 173192, https://doi.org/10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, https://doi.org/10.1016/S0169-8095(00)00064-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., T. V. Prabha, N. Benmoshe, G. Pandithurai, and M. Ovchinnikov, 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res. Atmos., 118, 91239140, https://doi.org/10.1002/JGRD.50641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci., 52, 36203634, https://doi.org/10.1175/1520-0469(1995)052<3620:TIOSFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, https://doi.org/10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., and R. L. Reed, 1977: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103, 297306, https://doi.org/10.1002/qj.49710343607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., N. C. Johnson, and J. Y. Harrington, 2008: Radiative influences on ice crystal and droplet growth within mixed-phase stratus clouds. J. Geophys. Res., 113, D09203, https://doi.org/10.1029/2007JD009262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, https://doi.org/10.5194/acp-12-9941-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, J., 1959: Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteor., 16, 653662, https://doi.org/10.1175/1520-0469(1959)016<0653:SVTOBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., H. Nordsiek, and R. A. Shaw, 2010: Clustering of settling charged particles in turbulence: Theory and experiments. New J. Phys., 12, 123030, https://doi.org/10.1088/1367-2630/12/12/123030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and Coauthors, 2014: The CHUVA project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, https://doi.org/10.1175/BAMS-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2010: Sources and properties of Amazonian aerosol particles. Rev. Geophys., 48, RG2002, https://doi.org/10.1029/2008RG000280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2016: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys., 16, 47854797, https://doi.org/10.5194/acp-16-4785-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016a: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos. Sci., 73, 14411454, https://doi.org/10.1175/JAS-D-15-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2016b: Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations. J. Atmos. Sci., 73, 14551480, https://doi.org/10.1175/JAS-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2018: The NCAR Command Language (version 6.5.0). UCAR/NCAR Computational and Information Systems Lab Technology Development Division, https://doi.org/10.5065/D6WD3XH5.

    • Crossref
    • Export Citation
  • Ovtchinnikov, M., and R. C. Easter, 2009: Nonlinear advection algorithms applied to interrelated tracers: Errors and implications for modeling aerosol–cloud interactions. Mon. Wea. Rev., 137, 632644, https://doi.org/10.1175/2008MWR2626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. Hannah, and H. Morrison, 2019: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, https://doi.org/10.5194/acp-7-1961-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and L. J. Donner, 2006: Cloud microphysics, radiation and vertical velocities in two- and three-dimensional simulations of deep convection. Quart. J. Roy. Meteor. Soc., 132, 30113033, https://doi.org/10.1256/qj.05.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533, https://doi.org/10.1256/003590002321042072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, B. Grits, and M. Shapiro, 2006: Collisions of small drops in a turbulent flow. Part III: Relative droplet fluxes and swept volumes. J. Atmos. Sci., 63, 21232139, https://doi.org/10.1175/JAS3730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and M. Shapiro, 2007: Collisions of cloud droplets in a turbulent flow. Part IV: Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 24622482, https://doi.org/10.1175/JAS3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and A. Korolev, 2016: Theoretical analysis of mixing in liquid clouds—Part III: Inhomogeneous mixing. Atmos. Chem. Phys., 16, 92739297, https://doi.org/10.5194/acp-16-9273-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pöhlker, M. L., and Coauthors, 2016: Long-term observations of cloud condensation nuclei in the Amazon rain forest—Part I: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmos. Chem. Phys., 16, 15 70915 740, https://doi.org/10.5194/acp-16-15709-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2012: Microphysics of Clouds and Precipitation. Springer Science and Business Media, 714 pp.

  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., M. Pinsky, A. Khain, and C. Erlick, 2003: Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds. Atmos. Res., 66, 4364, https://doi.org/10.1016/S0169-8095(02)00172-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., J. Leinonen, C. Siewert, and S. Kneifel, 2019: The geometry of rimed aggregate snowflakes: A modeling study. J. Adv. Model. Earth Syst., 11, 712731, https://doi.org/10.1029/2018MS001519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Slawinska, J., W. W. Grabowski, H. Pawlowska, and H. Morrison, 2012: Droplet activation and mixing in large-eddy simulation of a shallow cumulus field. J. Atmos. Sci., 69, 444462, https://doi.org/10.1175/JAS-D-11-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sölch, I., and B. Kärcher, 2010: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Quart. J. Roy. Meteor. Soc., 136, 20742093, https://doi.org/10.1002/qj.689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996a: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 9801006, https://doi.org/10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., R. L. Walko, W. R. Cotton, and G. Feingold, 1996b: The spurious production of cloud-edge supersaturations by Eulerian models. Mon. Wea. Rev., 124, 10341041, https://doi.org/10.1175/1520-0493(1996)124<1034:TSPOCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Simpson, and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44, 31753187, https://doi.org/10.1175/1520-0469(1987)044<3175:SPOACE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1963: Model experiments relating to thermals with increasing buoyancy. Quart. J. Roy. Meteor. Soc., 89, 6274, https://doi.org/10.1002/qj.49708937904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149, https://doi.org/10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123328, https://doi.org/10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., F. Hoffmann, and M. Lerch, 2017: Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations. Geosci. Model Dev., 10, 15211548, https://doi.org/10.5194/gmd-10-1521-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., O. Ayala, B. Rosa, and W. W. Grabowski, 2008: Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J. Phys., 10, 075013, https://doi.org/10.1088/1367-2630/10/7/075013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, https://doi.org/10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2016: ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc., 97, 18851908, https://doi.org/10.1175/BAMS-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R., 1974: The life cycle of a thunderstorm in three dimensions. J. Atmos. Sci., 31, 16291651, https://doi.org/10.1175/1520-0469(1974)031<1629:TLCOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., R. Shaw, and H. Xue, 2016: Conditions for super-adiabatic droplet growth after entrainment mixing. Atmos. Chem. Phys., 16, 94219433, https://doi.org/10.5194/acp-16-9421-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., P. Kollias, R. A. Shaw, and A. M. Vogelmann, 2018: Cloud droplet size distribution broadening during diffusional growth: Ripening amplified by deactivation and reactivation. Atmos. Chem. Phys., 18, 73137328, https://doi.org/10.5194/acp-18-7313-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., and Coauthors, 2015: Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach. J. Geophys. Res. Atmos., 120, 84488468, https://doi.org/10.1002/2015JD023647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., Z. Levin, T. G. Reisin, and S. Tzivion, 2000: The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmos. Res., 53, 91116, https://doi.org/10.1016/S0169-8095(99)00046-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., W.-K. Tao, S. Lang, A. Y. Hou, M. Zhang, and J. Simpson, 2008: On the sensitivity of atmospheric ensembles to cloud microphysics in long-term cloud-resolving model simulations. J. Meteor. Soc. Japan, 86A, 4565, https://doi.org/10.2151/jmsj.86A.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 55 55 25
Full Text Views 27 27 9
PDF Downloads 35 35 11

Drop Size Distribution Broadening Mechanisms in a Bin Microphysics Eulerian Model

View More View Less
  • 1 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil
  • 2 Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado, and Australian Research Council Centre for Excellence in Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
  • 3 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São Paulo, Brazil, and Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • 4 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • 5 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case.

Corresponding author: Lianet Hernández Pardo, lianet.pardo@inpe.br

Abstract

In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case.

Corresponding author: Lianet Hernández Pardo, lianet.pardo@inpe.br
Save