• Abraham, F. F., 1970: Functional dependence of the drag coefficient of a sphere on Reynolds number. Phys. Fluids, 13, 2194, https://doi.org/10.1063/1.1693218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1970: A fast, approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 51655171, https://doi.org/10.1029/JC075i027p05165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumenfeld, R., and B. B. Mandelbrot, 1997: Lévy dusts, Mittag-Leffler statistics, mass fractal lacunarity, and perceived dimension. Phys. Rev., 56E, 112118, https://doi.org/10.1103/PhysRevE.56.112.

    • Search Google Scholar
    • Export Citation
  • Böhm, J., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm, J., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part III: Riming and aggregation. Atmos. Res., 28, 103123, https://doi.org/10.1016/0169-8095(92)90023-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Thompson, and M. Schönhuber, 2008: Aggregate terminal velocity/temperature relations. J. Appl. Meteor. Climatol., 47, 27292736, https://doi.org/10.1175/2008JAMC1869.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., C. Emersic, and P. R. Field, 2012: A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos. Chem. Phys., 12, 20552076, https://doi.org/10.5194/acp-12-2055-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drake, R. L., 1972: The scalar transport equation of coalescence theory: Moments and kernels. J. Atmos. Sci., 29, 537547, https://doi.org/10.1175/1520-0469(1972)029<0537:TSTEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., Z. Jiang, J. Y. Harrington, J. Verlinde, K. Fitch, and T. J. Garrett, 2019: The shape and density evolution of snow aggregates. J. Atmos. Sci., 76, 39193940, https://doi.org/10.1175/JAS-D-19-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, https://doi.org/10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, C., 1961: The G and H functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98, 395429, https://doi.org/10.2307/1993339.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shukurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956, https://doi.org/10.1175/1520-0469(2003)060<0936:PFTCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. D. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002a: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitation clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002b: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, https://doi.org/10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, https://doi.org/10.1175/JAMC-D-11-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., J. Verlinde, E. E. Clothiaux, K. Aydin, and C. Schmitt, 2019: Shapes and fall orientations of ice particle aggregates. J. Atmos. Sci., 76, 19031916, https://doi.org/10.1175/JAS-D-18-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1982: Observations of the falling motion of early snow flakes. Part I. Relationship between the free-fall pattern and the number and shape of component snow crystals. J. Meteor. Soc. Japan, 60, 797803, https://doi.org/10.2151/jmsj1965.60.2_797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 31083121, https://doi.org/10.1175/1520-0469(1989)046<3108:AOICIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 18721884, https://doi.org/10.1175/1520-0469(2002)059<1872:TVODAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2005: Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci., 62, 43434357, https://doi.org/10.1175/JAS3622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, https://doi.org/10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, https://doi.org/10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139147, https://doi.org/10.2151/jmsj1965.43.3_139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, https://doi.org/10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45, 34313451, https://doi.org/10.1175/1520-0469(1988)045<3431:EOSSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, https://doi.org/10.1175/JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., A. Huggins, and V. Grubisic, 2006: A new snow growth model with application to radar precipitation estimates. Atmos. Res., 82, 218, https://doi.org/10.1016/j.atmosres.2005.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., 1978: An approximate analytic model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35, 118124, https://doi.org/10.1175/1520-0469(1978)035<0118:AAAMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., and R. C. Srivastava, 1979: A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484493, https://doi.org/10.1175/1520-0469(1979)036<0484:ANAOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasyo, Y., and T. Matsuo, 1980: On the statistical investigation of the fall velocity of snowflakes. Pap. Meteor. Geophys., 31, 6179, https://doi.org/10.2467/mripapers.31.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, https://doi.org/10.1175/2009JAS3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., K. Sulia, Z. J. Lebo, A. J. Heymsfield, V. Przybo, and P. Connolly, 2019: The fall speed variability of similarly sized ice particle aggregates. J. Appl. Meteor. Climatol., 58, 17511761, https://doi.org/10.1175/JAMC-D-18-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., U. Blahak, and R. Buhr, 2014: On the analytic approximation of bulk collision rates for non-spherical hydrometeors. Geosci. Model Dev., 7, 463478, https://doi.org/10.5194/gmd-7-463-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 2010: Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci., 67, 33193335, https://doi.org/10.1175/2010JAS3390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. D., 1968: A transformation of the stochastic equation for droplet coalescence. Proc. Int. Conf. on Cloud Physics, Toronto, ON, Canada, Amer. Meteor. Soc., 115–125.

  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 28712880, https://doi.org/10.1175/1520-0469(1990)047<2871:ASTTCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, G. T., 1996: The projected areas of ellipsoids and cylinders. Powder Technol., 86, 195200, https://doi.org/10.1016/0032-5910(95)03049-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38, 2962, https://doi.org/10.1016/0169-8095(94)00087-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206219, https://doi.org/10.1175/2007JAS2315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisner, C., H. D. Orville, and C. Myers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 11601181, https://doi.org/10.1175/1520-0469(1972)029<1160:ANMOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, A. J. Heymsfield, and G. L. Stephens, 2015: Microphysical constraints on millimeter-wavelength scattering properties of snow particles. J. Appl. Meteor. Climatol., 54, 909931, https://doi.org/10.1175/JAMC-D-14-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., E. Jung, and G. Lee, 2010: Snow studies. Part I: A study of natural variability of snow terminal velocity. J. Atmos. Sci., 67, 15911604, https://doi.org/10.1175/2010JAS3342.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 190 190 42
Full Text Views 52 52 25
PDF Downloads 71 71 29

How Snow Aggregate Ellipsoid Shape and Orientation Variability Affects Fall Speed and Self-Aggregation Rates

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Snow aggregate shapes and orientations have long been known to exhibit substantial variability. Despite this observed variability, most weather and climate prediction models use fixed power-law functions that deterministically map particle size to mass and fall speed. As such, integrated quantities like precipitation and self-aggregation rates currently ignore nonlinear effects resulting from variation in shape and orientation for aggregates of the same size. This study therefore develops an analytic framework that couples an empirically based bivariate distribution of ellipsoid shapes to classical hydrodynamic theory so as to capture an appropriate dispersion of masses, projected areas, and fall speeds for an assumed size distribution. For a fixed aggregate size, shape variations produce approximately ±0.13 m s−1 standard deviation of fall speed which increases the mass flux fall speed dispersion by more than 100% over traditional microphysics models. This increased fall speed dispersion results predominantly from shape-induced mass dispersion whereas orientation and drag dispersion play a lesser role. Shape variations can increase mass- and reflectivity-weighted fall speeds by up to 60% of traditional models whereas self-aggregation rates can increase by a factor of 100 for very small slope parameters. This implies that aggregate shape variations effectively forestall the theorized onset of fall speed distribution narrowing and subsequent quenching of the aggregation process. As a result, it is likely that secondary ice formation is necessary to prevent an ever decreasing slope parameter. The mathematical theory presented in this study is used to develop simple correction factors for snow forecast and climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0128.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edwin Lee Dunnavan, edwin.dunnavan@noaa.gov, dunnavel@ou.edu

Abstract

Snow aggregate shapes and orientations have long been known to exhibit substantial variability. Despite this observed variability, most weather and climate prediction models use fixed power-law functions that deterministically map particle size to mass and fall speed. As such, integrated quantities like precipitation and self-aggregation rates currently ignore nonlinear effects resulting from variation in shape and orientation for aggregates of the same size. This study therefore develops an analytic framework that couples an empirically based bivariate distribution of ellipsoid shapes to classical hydrodynamic theory so as to capture an appropriate dispersion of masses, projected areas, and fall speeds for an assumed size distribution. For a fixed aggregate size, shape variations produce approximately ±0.13 m s−1 standard deviation of fall speed which increases the mass flux fall speed dispersion by more than 100% over traditional microphysics models. This increased fall speed dispersion results predominantly from shape-induced mass dispersion whereas orientation and drag dispersion play a lesser role. Shape variations can increase mass- and reflectivity-weighted fall speeds by up to 60% of traditional models whereas self-aggregation rates can increase by a factor of 100 for very small slope parameters. This implies that aggregate shape variations effectively forestall the theorized onset of fall speed distribution narrowing and subsequent quenching of the aggregation process. As a result, it is likely that secondary ice formation is necessary to prevent an ever decreasing slope parameter. The mathematical theory presented in this study is used to develop simple correction factors for snow forecast and climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0128.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edwin Lee Dunnavan, edwin.dunnavan@noaa.gov, dunnavel@ou.edu
Save