• Banfield, D., B. Conrath, P. Gierasch, R. Wilson, and M. Smith, 2004: Traveling waves in the Martian atmosphere from MGS TES nadir data. Icarus, 170, 365403, https://doi.org/10.1016/j.icarus.2004.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., 1980: Time spectral analysis of midlatitude disturbances in the Martian atmosphere. J. Atmos. Sci., 37, 20022015, https://doi.org/10.1175/1520-0469(1980)037<2002:TSAOMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., 1981: Midlatitude disturbances in the Martian atmosphere: A second Mars year. J. Atmos. Sci., 38, 225234, https://doi.org/10.1175/1520-0469(1981)038<0225:MDITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., 1984: Linear baroclinic instability in the Martian atmosphere. J. Atmos. Sci., 41, 15361550, https://doi.org/10.1175/1520-0469(1984)041<1536:LBIITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., J. B. Pollack, R. M. Haberle, C. B. Leovy, R. W. Zurek, H. Lee, and J. Schaeffer, 1993: Mars atmospheric dynamics as simulated by the NASA Ames general circulation model 2. Transient baroclinic eddies. J. Geophys. Res., 98, 31253148, https://doi.org/10.1029/92JE02935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. R., R. M. Haberle, R. J. Wilson, S. R. Lewis, J. R. Murphy, and P. L. Read, 2017: The global circulation. The Atmosphere and Climate of Mars, R. M. Haberle et al., Eds., Cambridge University Press, 229294, https://doi.org/10.1017/9781139060172.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., 2017: Wave energetics of the atmosphere of Mars. Ph.D. dissertation, Texas A&M University, 205 pp., https://hdl.handle.net/1969.1/161620.

    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., and J. Dyer, 2017: The minimum length scale for evaluating QG omega using high-resolution model data. Mon. Wea. Rev., 145, 16591678, https://doi.org/10.1175/MWR-D-16-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., and H. Wang, 2019: The Aonia-Solis-Valles dust storm track in the Southern Hemisphere of Mars. Icarus, 321, 367378, https://doi.org/10.1016/j.icarus.2018.10.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., and H. Wang, 2020: Eddy evolution during large dust storms. Icarus, 338, 113507, https://doi.org/10.1016/j.icarus.2019.113507.

    • Crossref
    • Export Citation
  • Battalio, J. M., and H. Wang, 2021: The Mars Dust Activity Database (MDAD): A comprehensive statistical study of dust storm sequences. Icarus, 354, 114059, https://doi.org/10.1016/j.icarus.2020.114059.

    • Crossref
    • Export Citation
  • Battalio, J. M., I. Szunyogh, and M. Lemmon, 2016: Energetics of the Martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset. Icarus, 276, 120, https://doi.org/10.1016/j.icarus.2016.04.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., I. Szunyogh, and M. Lemmon, 2018a: Corrigendum to “Energetics of the Martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset.” Icarus, 302, 565567, https://doi.org/10.1016/j.icarus.2017.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battalio, J. M., I. Szunyogh, and M. Lemmon, 2018b: Wave energetics of the Southern Hemisphere of Mars. Icarus, 309, 220240, https://doi.org/10.1016/j.icarus.2018.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantor, B. A., 2007: MOC observations of the 2001 Mars planet-encircling dust storm. Icarus, 186, 6096, https://doi.org/10.1016/j.icarus.2006.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2000: Wave packets and life cycles of troughs in the upper troposphere: Examples from the Southern Hemisphere summer season of 1984/85. Mon. Wea. Rev., 128, 2550, https://doi.org/10.1175/1520-0493(2000)128<0025:WPALCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., S. R. Lewis, and P. L. Read, 1996: Baroclinic wave transitions in the Martian atmosphere. Icarus, 120, 344357, https://doi.org/10.1006/icar.1996.0055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, https://doi.org/10.1175/2010JCLI3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diniz, F. L., and R. Todling, 2020: Assessing the impact of observations in a multi-year reanalysis. Quart. J. Roy. Meteor. Soc., 146, 724747, https://doi.org/10.1002/qj.3705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., K. Weickmann, and K. P. Hoinka, 2007: Angular momentum in the global atmospheric circulation. Rev. Geophys., 45, RG4007, https://doi.org/10.1029/2006RG000213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, F., and Coauthors, 1999: Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., 104, 24 15524 175, https://doi.org/10.1029/1999JE001025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., R. J. Wilson, R. N. Hoffman, M. J. Hoffman, T. Miyoshi, K. Ide, T. McConnochie, and E. Kalnay, 2012: Ensemble Kalman filter data assimilation of thermal emission spectrometer temperature retrievals into a Mars GCM. J. Geophys. Res., 117, E11008, https://doi.org/10.1029/2012JE004097.

    • Crossref
    • Export Citation
  • Greybush, S. J., E. Kalnay, M. J. Hoffman, and R. J. Wilson, 2013: Identifying Martian atmospheric instabilities and their physical origins using bred vectors. Quart. J. Roy. Meteor. Soc., 139, 639653, https://doi.org/10.1002/qj.1990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., H. E. Gillespie, and R. J. Wilson, 2019a: Transient eddies in the TES/MCS Ensemble Mars Atmosphere Reanalysis System (EMARS). Icarus, 317, 158181, https://doi.org/10.1016/j.icarus.2018.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., and Coauthors, 2019b: The Ensemble Mars Atmosphere Reanalysis System (EMARS) version 1.0. Geosci. Data J., 6, 137150, https://doi.org/10.1002/gdj3.77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1983: Transient planetary waves simulated GFDL spectral general circulation models. Part II: Effect of nonlinear energy transfer. J. Atmos. Sci., 40, 951957, https://doi.org/10.1175/1520-0469(1983)040<0951:TPWSBG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., 2006: Radio occultation measurements of transient eddies in the Northern Hemisphere of Mars. J. Geophys. Res., 111, E05002, https://doi.org/10.1029/2005JE002612.

    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., and H. Wang, 2010: Further observations of regional dust storms and baroclinic eddies in the Northern Hemisphere of Mars. Icarus, 206, 290305, https://doi.org/10.1016/j.icarus.2009.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., and R. J. Wilson, 2021: Baroclinic waves in the Northern Hemisphere of Mars as observed by the MRO Mars Climate Sounder and the MGS Thermal Emission Spectrometer. Icarus, 357, 114152, https://doi.org/10.1016/j.icarus.2020.114152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., H. Wang, and M. D. Smith, 2012: A multi-year survey of dynamics near the surface in the Northern Hemisphere of Mars: Short-period baroclinic waves and dust storms. Icarus, 219, 307320, https://doi.org/10.1016/j.icarus.2012.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, J. L., and J. R. Barnes, 1996: Forced stationary planetary waves in Mars’s winter atmosphere. J. Atmos. Sci., 53, 428448, https://doi.org/10.1175/1520-0469(1996)053<0428:FSPWIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, J. L., and M. A. Kahre, 2010: Extratropical cyclones, frontal waves, and Mars dust: Modeling and considerations. Geophys. Res. Lett., 37, L22202, https://doi.org/10.1029/2010GL044262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, J. L., R. M. Haberle, J. R. Barnes, A. F. C. Bridger, J. B. Pollack, H. Lee, and J. Schaeffer, 1996: Orographic control of storm zones on Mars. Nature, 380, 413416, https://doi.org/10.1038/380413a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, J. L., R. M. Haberle, and J. Schaeffer, 1997: Seasonal variations of storm zones on Mars. Adv. Space Res., 19, 12371240, https://doi.org/10.1016/S0273-1177(97)00275-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J. A., S. R. Lewis, and M. R. Patel, 2020: OpenMARS: A global record of Martian weather from 1999 to 2015. Planet. Space Sci., 188, 104962, https://doi.org/10.1016/j.pss.2020.104962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, T., Y. Deng, and W. Li, 2013: Local kinetic energy budget of high-frequency and intermediate-frequency eddies: Winter climatology and interannual variability. Climate Dyn., 41, 961976, https://doi.org/10.1007/s00382-013-1684-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kass, D. M., A. Kleinböhl, D. J. McCleese, J. T. Schofield, and M. D. Smith, 2016: Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett., 43, 61116118, https://doi.org/10.1002/2016GL068978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleinböhl, A., and Coauthors, 2009: Mars climate sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res., 114, E10006, https://doi.org/10.1029/2009JE003358.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., A. S. Medvedev, P. Hartogh, and M. Takahashi, 2007: Seasonal changes of the baroclinic wave activity in the Northern Hemisphere of Mars simulated with a GCM. Geophys. Res. Lett., 34, L09203, https://doi.org/10.1029/2006GL028816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C., M. I. Richardson, C. E. Newman, and A. Michael, 2018: The sensitivity of solsticial pauses to atmospheric ice and dust in the MarsWRF general circulation model. Icarus, 311, 2334, https://doi.org/10.1016/j.icarus.2018.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 14131428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. R., P. L. Read, B. J. Conrath, J. C. Pearl, and M. D. Smith, 2007: Assimilation of thermal emission spectrometer atmospheric data during the Mars global surveyor aerobraking period. Icarus, 192, 327347, https://doi.org/10.1016/j.icarus.2007.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, S. R., D. P. Mulholland, P. L. Read, L. Montabone, R. J. Wilson, and M. D. Smith, 2016: The solsticial pause on Mars: 1. A planetary wave reanalysis. Icarus, 264, 456464, https://doi.org/10.1016/j.icarus.2015.08.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLay, J. G., and J. E. Martin, 2002: Surface cyclolysis in the North Pacific Ocean. Part III: Composite local energetics of tropospheric-deep cyclone decay associated with rapid surface cyclolysis. Mon. Wea. Rev., 130, 25072529, https://doi.org/10.1175/1520-0493(2002)130<2507:SCITNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montabone, L., and Coauthors, 2014: The Mars Analysis Correction Data Assimilation (MACDA) dataset V1.0. Geosci. Data J., 1, 129139, https://doi.org/10.1002/gdj3.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montabone, L., and Coauthors, 2015: Eight-year climatology of dust optical depth on Mars. Icarus, 251, 6595, https://doi.org/10.1016/j.icarus.2014.12.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montabone, L., A. Spiga, D. M. Kass, A. Kleinböhl, F. Forget, and E. Millour, 2020: Martian year 34 column dust climatology from Mars Climate Sounder observations: Reconstructed maps and model simulations. J. Geophys. Res. Planets, 125, e2019JE006111, https://doi.org/10.1029/2019JE006111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooring, T. A., and R. J. Wilson, 2015: Transient eddies in the MACDA Mars reanalysis. J. Geophys. Res. Planets, 120, 16711696, https://doi.org/10.1002/2015JE004824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooring, T. A., I. M. Held, and R. J. Wilson, 2019: Effects of the mean flow on Martian transient eddy activity: Studies with an idealized general circulation model. J. Atmos. Sci., 76, 23752397, https://doi.org/10.1175/JAS-D-18-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., S. R. Lewis, P. L. Read, J.-B. Madeleine, and F. Forget, 2016: The solsticial pause on Mars: 2 modelling and investigation of causes. Icarus, 264, 465477, https://doi.org/10.1016/j.icarus.2015.08.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 16291642, https://doi.org/10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, L., T. Schneider, and F. Ait-Chaalal, 2020: Midwinter suppression of storm tracks in an idealized zonally symmetric setting. J. Atmos. Sci., 77, 297313, https://doi.org/10.1175/JAS-D-18-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, https://doi.org/10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212225, https://doi.org/10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pankine, A. A., 2015: The nature of the systematic radiometric error in the MGS TES spectra. Planet. Space Sci., 109–110, 6475, https://doi.org/10.1016/j.pss.2015.01.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pankine, A. A., 2016: Radiometric error and re-calibration of the MGS TES spectra. Planet. Space Sci., 134, 112121, https://doi.org/10.1016/j.pss.2016.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. J., and K. Y. Kim, 2021: Influence of Northern Hemispheric winter warming on the Pacific storm track. Climate Dyn., 56, 1487–1506, https://doi.org/10.1007/s00382-020-05544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., and S. R. Lewis, 2004: Transient weather systems. The Martian Climate Revisited—Atmosphere and Environment of a Desert Planet, Springer-Verlag, 137–178.

  • Rogberg, P., P. L. Read, S. R. Lewis, and L. Montabone, 2010: Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation. Quart. J. Roy. Meteor. Soc., 136, 16141635, https://doi.org/10.1002/qj.677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. W. Waugh, and R. K. Scott, 2017: The stability of Mars’s annular polar vortex. J. Atmos. Sci., 74, 15331547, https://doi.org/10.1175/JAS-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirley, J. H., and Coauthors, 2015: Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES. Icarus, 251, 2649, https://doi.org/10.1016/j.icarus.2014.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. D., 2004: Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus, 167, 148165, https://doi.org/10.1016/j.icarus.2003.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M. D., 2009: THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus, 202, 444–452, https://doi.org/10.1016/j.icarus.2009.03.027.

    • Crossref
    • Export Citation
  • Szunyogh, I., 2014: Perturbation dynamics. Applicable Atmospheric Dynamics, World Scientific, 189–285, https://doi.org/10.1142/9789814335706_0002.

    • Crossref
    • Export Citation
  • Tabataba-Vakili, F., P. L. Read, S. R. Lewis, L. Montabone, T. Ruan, Y. Wang, A. Valeanu, and R. M. B. Young, 2015: A Lorenz/Boer energy budget for the atmosphere of Mars from a “reanalysis” of spacecraft observations. Geophys. Res. Lett., 42, 83208327, https://doi.org/10.1002/2015GL065659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toigo, A. D., D. W. Waugh, and S. D. Guzewich, 2017: What causes Mars’ annular polar vortices? Geophys. Res. Lett., 44, 7178, https://doi.org/10.1002/2016GL071857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and P. Speth, 1991: The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses. Meteor. Atmos. Phys., 45, 125138, https://doi.org/10.1007/BF01029650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and M. I. Richardson, 2015: The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus, 251, 112127, https://doi.org/10.1016/j.icarus.2013.10.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and A. D. Toigo, 2016: The variability, structure and energy conversion of the Northern Hemisphere traveling waves simulated in a Mars general circulation model. Icarus, 271, 207221, https://doi.org/10.1016/j.icarus.2016.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., M. I. Richardson, R. J. Wilson, A. P. Ingersoll, A. D. Toigo, and R. W. Zurek, 2003: Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett., 30, 1488, https://doi.org/10.1029/2002GL016828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., M. I. Richardson, A. D. Toigo, and C. E. Newman, 2013: Zonal wavenumber three traveling waves in the Northern Hemisphere of Mars simulated with a general circulation model. Icarus, 223, 654676, https://doi.org/10.1016/j.icarus.2013.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. D. Toigo, S. D. Guzewich, S. J. Greybush, R. J. Wilson, and L. Montabone, 2016: Martian polar vortices: Comparison of reanalyses. J. Geophys. Res. Planets, 121, 17701785, https://doi.org/10.1002/2016JE005093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., and K. Hamilton, 1996: Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci., 53, 12901326, https://doi.org/10.1175/1520-0469(1996)053<1290:CMSOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. J., D. Banfield, B. J. Conrath, and M. D. Smith, 2002: Traveling waves in the Northern Hemisphere of Mars. Geophys. Res. Lett., 29, 1684, https://doi.org/10.1029/2002GL014866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, J., K.-C. Chow, and K.-L. Chan, 2019: Dynamical processes of dust lifting in the northern mid-latitude region of Mars during the dust storm season. Icarus, 317, 94103, https://doi.org/10.1016/j.icarus.2018.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 446 444 15
Full Text Views 146 146 8
PDF Downloads 158 158 9

Transient Eddy Kinetic Energetics on Mars in Three Reanalysis Datasets

View More View Less
  • 1 aDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut
Restricted access

Abstract

The ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Atmosphere Reanalysis System (EMARS). Short-period eddies are predominantly surface based, have the largest amplitudes in the Northern Hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the Northern Hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas basins in the Southern Hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.

Significance Statement

Dust storms on Mars are initiated by traveling atmospheric waves, so understanding the relationships between waves and dust is critical to surface spacecraft safety. The growth and decay of waves are compared in three datasets to evaluate whether waves behave consistently across datasets and are represented similarly across different eras of instrumentation. Waves grow by instabilities caused by horizontal and vertical temperature gradients and lose energy to slower-traveling waves at higher altitudes, but agreement across datasets declines using more recent observations because of problems measuring temperatures near the surface. Regardless, combining dust storm observations and descriptions of traveling waves provides a new avenue for explaining dust storm variability on Mars.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Michael Battalio, michael@battalio.com

Abstract

The ability of Martian reanalysis datasets to represent the growth and decay of short-period (1.5 < P < 8 sol) transient eddies is compared across the Mars Analysis Correction Data Assimilation (MACDA), Open access to Mars Assimilated Remote Soundings (OpenMARS), and Ensemble Mars Atmosphere Reanalysis System (EMARS). Short-period eddies are predominantly surface based, have the largest amplitudes in the Northern Hemisphere, and are found, in order of decreasing eddy kinetic energy amplitude, in Utopia, Acidalia, and Arcadia Planitae in the Northern Hemisphere, and south of the Tharsis Plateau and between Argyre and Hellas basins in the Southern Hemisphere. Short-period eddies grow on the upstream (western) sides of basins via baroclinic energy conversion and by extracting energy from the mean flow and long-period (P > 8 sol) eddies when interacting with high relief. Overall, the combined impact of barotropic energy conversion is a net loss of eddy kinetic energy, which rectifies previous conflicting results. When Thermal Emission Spectrometer observations are assimilated (Mars years 24–27), all three reanalyses agree on eddy amplitude and timing, but during the Mars Climate Sounder (MCS) observational era (Mars years 28–33), eddies are less constrained. The EMARS ensemble member has considerably higher eddy generation than the ensemble mean, and bulk eddy amplitudes in the deterministic OpenMARS reanalysis agree with the EMARS ensemble rather than the EMARS member. Thus, analysis of individual eddies during the MCS era should only be performed when eddy amplitudes are large and when there is agreement across reanalyses.

Significance Statement

Dust storms on Mars are initiated by traveling atmospheric waves, so understanding the relationships between waves and dust is critical to surface spacecraft safety. The growth and decay of waves are compared in three datasets to evaluate whether waves behave consistently across datasets and are represented similarly across different eras of instrumentation. Waves grow by instabilities caused by horizontal and vertical temperature gradients and lose energy to slower-traveling waves at higher altitudes, but agreement across datasets declines using more recent observations because of problems measuring temperatures near the surface. Regardless, combining dust storm observations and descriptions of traveling waves provides a new avenue for explaining dust storm variability on Mars.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Michael Battalio, michael@battalio.com
Save