• Babanin, A. V., J. McConochie, and D. Chalikov, 2018: Winds near the surface of waves: Observations and modeling. J. Phys. Oceanogr., 48, 10791088, https://doi.org/10.1175/JPO-D-17-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakumar, B. J., and R. J. Adrian, 2007: Large- and very-large-scale motions in channel and boundary-layer flows. Philos. Trans. Roy. Soc., 365A, 665681, https://doi.org/10.1098/rsta.2006.1940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., P. Drobinski, C. Fesquet, T. Dubos, and C. Pietras, 2007: Long-term study of coherent structures in the atmospheric surface layer. Bound.-Layer Meteor., 125, 124, https://doi.org/10.1007/s10546-007-9190-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2016: Structure of the airflow above surface waves. J. Phys. Oceanogr., 46, 13771397, https://doi.org/10.1175/JPO-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calaf, M., M. Hultmark, H. J. Oldroyd, V. Simeonov, and M. B. Parlange, 2013: Coherent structures and the k−1 spectral behaviour. Phys. Fluids, 25, 125107, https://doi.org/10.1063/1.4834436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., N. L. Dias, S. T. Salesky, and Y. Pan, 2017: Scaling laws for the longitudinal structure function in the atmospheric surface layer. J. Atmos. Sci., 74, 11271147, https://doi.org/10.1175/JAS-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., F. Qiao, C. J. Huang, and B. Zhao, 2018: Deviation of wind stress from wind direction under low wind conditions. J. Geophys. Res. Oceans, 123, 93579368, https://doi.org/10.1029/2018JC014137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., F. Qiao, W. Jiang, J. Guo, and D. Dai, 2019: Impact of surface waves on wind stress under low to moderate wind conditions. J. Phys. Oceanogr., 49, 20172028, https://doi.org/10.1175/JPO-D-18-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, R. K. Newsom, R. M. Banta, R. C. Foster, and J.-L. Redelsperger, 2004: The structure of the near-neutral atmospheric surface layer. J. Atmos. Sci., 61, 699714, https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, J.-L. Redelsperger, V. Masson, R. M. Banta, and R. K. Newsom, 2007: Numerical and experimental investigation of the neutral atmospheric surface layer. J. Atmos. Sci., 64, 137156, https://doi.org/10.1175/JAS3831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2006: Turbulent bulk transfer coefficients and ozone deposition velocity in the international consortium for atmospheric research into transport and transformation. J. Geophys. Res., 111, D23S20, https://doi.org/10.1029/2006JD007597.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, https://doi.org/10.1007/BF00120524.

  • Geernaert, G. L., 2002: On extending the flux-profile similarity theory to include quasi-homogeneous conditions in the marine atmospheric surface layer. Bound.-Layer Meteor., 105, 433450, https://doi.org/10.1023/A:1020307703242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 2010: Normalizing air–sea flux coefficients for horizontal homogeneity, stationarity, and neutral stratification. J. Phys. Oceanogr., 40, 21482158, https://doi.org/10.1175/2010JPO4407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghannam, K., G. G. Katul, E. Bou-Zeid, T. Gerken, and M. Chamecki, 2018: Scaling and similarity of the anisotropic coherent eddies in near-surface atmospheric turbulence. J. Atmos. Sci., 75, 943964, https://doi.org/10.1175/JAS-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, https://doi.org/10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., L. S. Leo, H. J. S. Fernando, C. W. Fairall, E. Creegan, B. W. Blomquist, A. J. Christman, and C. M. Hocut, 2018: Air–sea/land interaction in the coastal zone. Bound.-Layer Meteor., 167, 181210, https://doi.org/10.1007/s10546-017-0326-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guala, M., S. E. Hommema, and R. J. Adrian, 2006: Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech., 554, 521542, https://doi.org/10.1017/S0022112006008871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., J. C. R. Hunt, and A.-S. Smedman, 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteor., 103, 101124, https://doi.org/10.1023/A:1014579828712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Smedman, E. Sahleé, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: The atmospheric boundary layer during swell: A field study and interpretation of the turbulent kinetic energy budget for high wave ages. J. Atmos. Sci., 66, 27642779, https://doi.org/10.1175/2009JAS2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Rutgersson, E. Sahlée, A.-S. Smedman, T. S. Hristov, W. M. Drennan, and K. K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, https://doi.org/10.1007/s10546-012-9776-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahlée, A.-S. Smedman, A. Rutgersson, E. Nilsson, K. K. Kahma, and W. M. Drennan, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds. J. Atmos. Sci., 72, 47774795, https://doi.org/10.1175/JAS-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahlée, A.-S. Smedman, A. Rutgersson, E. Nilsson, K. K. Kahma, and W. M. Drennan, 2018: The transition from downward to upward air–sea momentum flux in swell-dominated light wind conditions. J. Atmos. Sci., 75, 25792588, https://doi.org/10.1175/JAS-D-17-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horiguchi, M., T. Hayashi, H. Hashiguchi, Y. Ito, and H. Ueda, 2010: Observations of coherent turbulence structures in the near-neutral atmospheric boundary layer. Bound.-Layer Meteor., 136, 2544, https://doi.org/10.1007/s10546-010-9500-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horiguchi, M., T. Hayashi, A. Adachi, and S. Onogi, 2012: Large-scale turbulence structures and their contributions to the momentum flux and turbulence in the near-neutral atmospheric boundary layer observed from a 213-m tall meteorological tower. Bound.-Layer Meteor., 144, 179198, https://doi.org/10.1007/s10546-012-9718-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hristov, T., and J. Ruiz-Plancarte, 2014: Dynamic balances in a wavy boundary layer. J. Phys. Oceanogr., 44, 31853194, https://doi.org/10.1175/JPO-D-13-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hultmark, M., M. Vallikivi, S. C. C. Bailey, and A. J. Smits, 2013: Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. J. Fluid Mech., 728, 376395, https://doi.org/10.1017/jfm.2013.255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and J. F. Morrison, 2000: Eddy structure in turbulent boundary layers. Eur. J. Mech., 19, 673694, https://doi.org/10.1016/S0997-7546(00)00129-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66, 453475, https://doi.org/10.1023/A:1013519021030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchins, N., K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, 2012: Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound.-Layer Meteor., 145, 273306, https://doi.org/10.1007/s10546-012-9735-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., P. Sullivan, S. Wang, J. Doyle, and L. Vincent, 2016: Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci., 73, 26832697, https://doi.org/10.1175/JAS-D-15-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and M. B. Parlange, 1994: On the active role of temperature in surface-layer turbulence. J. Atmos. Sci., 51, 21812195, https://doi.org/10.1175/1520-0469(1994)051<2181:OTAROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katul, G. G., A. Porporato, and V. Nikora, 2012: Existence of k−1 power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg’s eddy viscosity. Phys. Rev. E, 86, 066311, https://doi.org/10.1103/PhysRevE.86.066311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khanna, S., and J. G. Brasseur, 1998: Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55, 710743, https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K. C., and R. J. Adrian, 1999: Very large-scale motion in the outer layer. Phys. Fluids, 11, 417422, https://doi.org/10.1063/1.869889.

  • Kunkel, G. J., and I. Marusic, 2006: Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech., 548, 375402, https://doi.org/10.1017/S0022112005007780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., P. Gentine, J. P. Mellado, and K. A. McColl, 2018: Implications of nonlocal transport and conditionally averaged statistics on Monin–Obukhov similarity theory and Townsend’s attached eddy hypothesis. J. Atmos. Sci., 75, 34033431, https://doi.org/10.1175/JAS-D-17-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C. L., J. C. McWilliams, C. H. Moeng, and P. P. Sullivan, 1996: Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow. Phys. Fluids, 8, 26262639, https://doi.org/10.1063/1.869048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., E. L. Andreas, J. B. Edson, D. Vickers, J. Sun, and E. G. Patton, 2016: Coastal zone surface stress with stable stratification. J. Phys. Oceanogr., 46, 95105, https://doi.org/10.1175/JPO-D-15-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marušić, I., and A. E. Perry, 1995: A wall-wake model for the turbulence structure of boundary layers. Part II. Further experimental support. J. Fluid Mech., 298, 389407, https://doi.org/10.1017/S0022112095003363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marušić, I., J. P. Monty, M. Hultmark, and A. J. Smits, 2013: On the logarithmic region in wall turbulence. J. Fluid Mech., 716, R3, https://doi.org/10.1017/jfm.2012.511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeon, B. J., J. Li, W. Jiang, J. F. Morrison, and A. J. Smits, 2004: Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech., 501, 135147, https://doi.org/10.1017/S0022112003007304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, A., and T. L. Bo, 2019: Spatial variation of statistical and spectral properties of the stream wise and wall-normal velocity fluctuations in the near-neutral atmospheric surface layer. Bound.-Layer Meteor., 173, 223242, https://doi.org/10.1007/s10546-019-00465-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouri, H., T. Morinaga, and S. Haginoya, 2019: Unlikely existence of kx −1 spectral law in wall turbulence: An observation of the atmospheric surface layer. Phys. Fluids, 31, 035103, https://doi.org/10.1063/1.5063545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, E. O., A. Rutgersson, A.-S. Smedman, and P. P. Sullivan, 2012: Convective boundary-layer structure in the presence of wind-following swell. Quart. J. Roy. Meteor. Soc., 138, 14761489, https://doi.org/10.1002/qj.1898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., and M. Chamecki, 2016: A scaling law for the shear-production range of second-order structure functions. J. Fluid Mech., 801, 459474, https://doi.org/10.1017/jfm.2016.427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, A. E., and M. S. Chong, 1982: On the mechanism of wall turbulence. J. Fluid Mech., 119, 173217, https://doi.org/10.1017/S0022112082001311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, A. E., and I. Marušić, 1995: A wall-wake model for the turbulence structure of boundary layers. Part I. Extension of the attached eddy hypothesis. J. Fluid Mech., 298, 361388, https://doi.org/10.1017/S0022112095003351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, A. E., S. Henbest, and M. S. Chong, 1986: A theoretical and experimental study of wall turbulence. J. Fluid Mech., 165, 163199, https://doi.org/10.1017/S002211208600304X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., and J. A. Smith, 1998: Removing wave effects from the wind stress vector. J. Geophys. Res., 103, 13631374, https://doi.org/10.1029/97JC02571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., Ø. Saetra, A. Rutgersson, K. K. Kahma, and H. Pettersson, 2009: Wave-induced wind in the marine boundary layer. J. Atmos. Sci., 66, 22562271, https://doi.org/10.1175/2009JAS3018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air-sea interaction during swell conditions. J. Geophys. Res., 104, 25 83325 851, https://doi.org/10.1029/1999JC900213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, and A. Sjöblom, 2003: A note on velocity spectra in the marine boundary layer. Bound.-Layer Meteor., 109, 2748, https://doi.org/10.1023/A:1025428024311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, E. Sahleé, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763, https://doi.org/10.1175/2009JAS2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, Y. P., and V. N. Kudryavtsev, 2010: Wind-speed undulations over swell: Field experiment and interpretation. Bound.-Layer Meteor., 136, 341363, https://doi.org/10.1007/s10546-010-9506-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, https://doi.org/10.1175/2007JAS2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and J. R. French, 2016: Air–sea interactions in light of new understanding of air–land interactions. J. Atmos. Sci., 73, 39313949, https://doi.org/10.1175/JAS-D-15-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

  • Vallikivi, M., B. Ganapathisubramani, and A. J. Smits, 2015: Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech., 771, 303326, https://doi.org/10.1017/jfm.2015.181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voermans, J. J., H. Rapizo, H. Ma, F. Qiao, and A. V. Babanin, 2019: Air–sea momentum fluxes during Tropical Cyclone Olwyn. J. Phys. Oceanogr., 49, 13691379, https://doi.org/10.1175/JPO-D-18-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and X. Zheng, 2016: Very large scale motions in the atmospheric surface layer: A field investigation. J. Fluid Mech., 802, 464489, https://doi.org/10.1017/jfm.2016.439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., T. Hristov, and A. Rutgersson, 2018: Vertical profiles of wave-coherent momentum flux and velocity variances in the marine atmospheric boundary layer. J. Phys. Oceanogr., 48, 625641, https://doi.org/10.1175/JPO-D-17-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and T. Bo, 2018: Scaling of wall-normal turbulence intensity and vertical eddy structures in the atmospheric surface layer. Bound.-Layer Meteor., 166, 199216, https://doi.org/10.1007/s10546-017-0306-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, R., and A. J. Smits, 2007: Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow. J. Fluid Mech., 576, 457473, https://doi.org/10.1017/S0022112006004526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Z., D. Zhao, B. Liu, J. A. Zhang, and J. Huang, 2017: Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions. J. Geophys. Res. Oceans, 122, 41234142, https://doi.org/10.1002/2016JC012399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Z., D. Zhao, J. A. Zhang, S. Li, Y. Cheng, H. Lv, and X. Ma, 2018: The influence of swell on the atmospheric boundary layer under nonneutral conditions. J. Phys. Oceanogr., 48, 925936, https://doi.org/10.1175/JPO-D-17-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Z., J. Song, P. Li, J. Huang, J. A. Zhang, Z. Wan, and S. Li, 2019: Effects of swell waves on atmospheric boundary layer turbulence: A low wind field study. J. Geophys. Res. Oceans, 124, 56715685, https://doi.org/10.1029/2019JC015153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, Z., S. Li, J. Huang, P. Li, J. Song, J. A. Zhang, and Z. Wan, 2020: Atmospheric boundary layer turbulence in the presence of swell: Turbulent kinetic energy budget, Monin–Obukhov similarity theory, and inertial dissipation method. J. Phys. Oceanogr., 50, 12131225, https://doi.org/10.1175/JPO-D-19-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 1
Full Text Views 0 0 0
PDF Downloads 0 0 0

The Turbulent Structure of the Marine Atmospheric Boundary Layer during and before a Cold Front

View More View Less
  • 1 School of Marine Science, Sun Yat-Sen University, Zhuhai, China
  • 2 Ocean College, Zhejiang University, Zhoushan, China
  • 3 Ocean Research Center of Zhou Shan, Zhejiang University, Zhoushan, China
  • 4 Guangzhou Institute of Tropical and Marine Meteorology, CMA, Guangdong, China
  • 5 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 6 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • 7 Hurricane Research Division, NOAA/AOML, Miami, Florida
  • 8 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • 9 Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 10 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • 11 Hong Kong Observatory, Hong Kong, China
© Get Permissions
Restricted access

Abstract

The turbulent structure within the marine atmospheric boundary layer is investigated based on four levels of observations at a fixed marine platform. During and before a cold front, the ocean surface is dominated by wind sea and swell waves, respectively, affording the opportunity to test the theory recently proposed in laboratory experiments or for flat land surfaces. The results reveal that the velocity spectra follow a k −1 law within the intermediate wavenumber (k) range immediately below inertial subrange during the cold front. A logarithmic height dependence of the horizontal velocity variances is also observed above the height of 20 m, while the vertical velocity variances increase with increasing height following a power law of 2/3. These features confirm the attached eddy model and the “top-down model” of turbulence over the ocean surface. However, the behavior of velocity variances under swell conditions is much different from those during the cold front, although a remarkable k −1 law can be observed in the velocity spectra. The quadrant analysis of the momentum flux also shows a significantly different result for the two conditions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0314.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongshui Zou, zouzhongshui@126.com

Abstract

The turbulent structure within the marine atmospheric boundary layer is investigated based on four levels of observations at a fixed marine platform. During and before a cold front, the ocean surface is dominated by wind sea and swell waves, respectively, affording the opportunity to test the theory recently proposed in laboratory experiments or for flat land surfaces. The results reveal that the velocity spectra follow a k −1 law within the intermediate wavenumber (k) range immediately below inertial subrange during the cold front. A logarithmic height dependence of the horizontal velocity variances is also observed above the height of 20 m, while the vertical velocity variances increase with increasing height following a power law of 2/3. These features confirm the attached eddy model and the “top-down model” of turbulence over the ocean surface. However, the behavior of velocity variances under swell conditions is much different from those during the cold front, although a remarkable k −1 law can be observed in the velocity spectra. The quadrant analysis of the momentum flux also shows a significantly different result for the two conditions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0314.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhongshui Zou, zouzhongshui@126.com

Supplementary Materials

    • Supplemental Materials (PDF 655.13 KB)
Save