• Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avramov, A., and J. Y. Harrington, 2010: The influence of parameterized ice habit on simulated mixed-phase Arctic clouds. J. Geophys. Res., 115, D03205, https://doi.org/10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63, 31603185, https://doi.org/10.1175/JAS3802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1999: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part II: Microphysical evolution of a winter orographic cloud. J. Atmos. Sci., 56, 22932312, https://doi.org/10.1175/1520-0469(1999)056<2293:SOCMAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and T.-C. Tsai, 2016: Triple-moment modal parameterization for the adaptive growth habit of pristine ice crystals. J. Atmos. Sci., 73, 21052122, https://doi.org/10.1175/JAS-D-15-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, and S. A. Rutledge, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBAMCSs in TRMM LBA. J. Geophys. Res., 107, 8077, https://doi.org/10.1029/2000JD000264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli: Part II. Mon. Wea. Rev., 100, 764784, https://doi.org/10.1175/1520-0493(1972)100<0764:NSOPDI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias Neto, J., and Coauthors, 2019: The Triple-Frequency And Polarimetric Radar Experiment for improving process observations of winter precipitation. Earth Syst. Sci. Data, 11, 845863, https://doi.org/10.5194/essd-11-845-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Clouds Experiment (M-PACE): Part II: Model results. J. Geophys. Res., 112, D24202, https://doi.org/10.1029/2007JD008646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaustad, K. L., D. D. Turner, and S. A. McFarlane, 2011: MWRRET value-added product: The retrieval of liquid water path and precipitable water vapor from Microwave Radiometer (MWR) data sets. DOE Tech. Rep. DOE/SC-ARM/TR-081.2, 19 pp.

    • Crossref
    • Export Citation
  • Giangrande, S. E., T. Toto, A. Bansemer, M. R. Kumjian, S. Mishra, and A. V. Ryzhkov, 2016: Insights into riming, aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event. J. Geophys. Res. Atmos., 121, 58465863, https://doi.org/10.1002/2015JD024537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298, https://doi.org/10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haario, H., E. Saksman, and J. Tamminen, 2001: An adaptive Metropolis algorithm. Bernoulli, 7, 223242, https://doi.org/10.2307/3318737.

  • Harrington, J. Y., K. J. Sulia, and H. C. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. J. Sulia, and H. C. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, https://doi.org/10.1175/JAS-D-12-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., A. Moyle, L. E. Hanson, and H. Morrison, 2019: On calculating deposition coefficients and aspect-ratio evolution in approximate models of ice crystal vapor growth. J. Atmos. Sci., 76, 16091625, https://doi.org/10.1175/JAS-D-18-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, https://doi.org/10.1175/JAS3963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindman, E., and D. Johnson, 1972: Numerical simulation of ice particle growth in a cloud of supercooled water droplets. J. Atmos. Sci., 29, 13131321, https://doi.org/10.1175/1520-0469(1972)029<1313:NSOIPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and N. Nichols, 2015: The error of representation: Basic understanding. Tellus, 67A, 24822, https://doi.org/10.3402/tellusa.v67.24822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., and S. E. Cohn, 2006: Treatment of observation error due to unresolved scales in atmospheric data assimilation. Mon. Wea. Rev., 134, 29002915, https://doi.org/10.1175/MWR3229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, https://doi.org/10.1175/JAS-D-14-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018a: Impacts of ice particle shape and density evolution on the distribution of orographic precipitation. J. Atmos. Sci., 75, 30953114, https://doi.org/10.1175/JAS-D-17-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018b: Microphysical characteristics of squall-line stratiform precipitation and transition zones simulated using an ice particle property-evolving model. Mon. Wea. Rev., 146, 723743, https://doi.org/10.1175/MWR-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1972: Measurement of falling velocity of individual snow crystals. J. Meteor. Soc. Japan, 50, 544583, https://doi.org/10.2151/jmsj1965.50.6_577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. J. Oper. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, https://doi.org/10.15191/nwajom.2013.0121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267, https://doi.org/10.1175/2010JAMC2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 30523067, https://doi.org/10.1175/JAS-D-13-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 10331061, https://doi.org/10.1175/MWR-D-15-0451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., C. Martinkus, O. Prat, S. Collis, M. van Lier-Walqui, and H. Morrison, 2019: A moment-based polarimetric radar forward operator for rain. J. Appl. Meteor. Climatol., 58, 113130, https://doi.org/10.1175/JAMC-D-18-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, K., and Coauthors, 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, D., and W. D. Scott, 1974: The mechanism of ice crystal growth and habit formation. J. Atmos. Sci., 31, 570580, https://doi.org/10.1175/1520-0469(1974)031<0570:TMOICG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and D. Moisseev, 2015: What do triple-frequency radar signatures reveal about aggregate snowflakes? J. Geophys. Res. Atmos., 120, 229239, https://doi.org/10.1002/2014JD022072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2003: Growth rates of the principal facets of ice between −10°C and −40°C. J. Cryst. Growth, 247, 530540, https://doi.org/10.1016/S0022-0248(02)01996-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2005: The physics of snow crystals. Rep. Prog. Phys., 68, 855895, https://doi.org/10.1088/0034-4885/68/4/R03.

  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500, https://doi.org/10.1029/2000JD900817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., Z. Jiang, K. Aydin, J. Verlinde, E. E. Clothiaux, and G. Botta, 2016: A polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmos. Meas. Tech., 9, 51195134, https://doi.org/10.5194/amt-9-5119-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., 2, 321335.

  • Mather, J. H., and J. M. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., A. von Lerber, and J. Tirra, 2017: Quantifying the effect of riming on snowfall using ground-based observations. J. Geophys. Res. Atmos., 122, 40194037, https://doi.org/10.1002/2016JD026272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized test. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. van Lier-Walqui, M. R. Kumjian, and O. P. Prat, 2020: A Bayesian approach for statistical-physical bulk parameterization of rain microphysics, Part I: Scheme description. J. Atmos. Sci., 77, 10191041, https://doi.org/10.1175/JAS-D-19-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, J., 2005: Branch growth and sidebranching in snow crystals. Cryst. Growth Des., 5, 15091525, https://doi.org/10.1021/cg049685v.

  • Nelson, J., and M. B. Baker, 1996: New theoretical framework for studies of vapor growth and sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101, 70337047, https://doi.org/10.1029/95JD03162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. Clothiaux, J. Verlinde, and K. Aydin, 2015a: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., 54, 13351351, https://doi.org/10.1175/JAMC-D-14-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, J. Verlinde, K. Aydin, and E. Clothiaux, 2015b: Linear depolarization ratios of columnar ice crystals in a deep precipitation system over the Arctic observed by zenith-pointing Ka-band Doppler radar. J. Appl. Meteor. Climatol., 54, 10601068, https://doi.org/10.1175/JAMC-D-15-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. Galletti, J. Verlinde, A. V. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. J. Appl. Meteor. Climatol., 55, 403424, https://doi.org/10.1175/JAMC-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., and Coauthors, 2014: Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223248, https://doi.org/10.1002/2013MS000282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535, https://doi.org/10.1175/2009MWR3094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. P. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, https://doi.org/10.1175/JAMC-D-12-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2018: Bulk-density representations of branched planar ice crystals: Errors in the polarimetric radar variables. J. Appl. Meteor. Climatol., 57, 333346, https://doi.org/10.1175/JAMC-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., and M. R. Kumjian, 2019: A probabilistic radar forward model for branched planar ice crystals. J. Appl. Meteor. Climatol., 58, 12451265, https://doi.org/10.1175/JAMC-D-18-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, https://doi.org/10.1175/JAMC-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sei, T., and T. Gonda, 1989: The growth mechanism and the habit change of ice crystals growing from the vapor phase. J. Cryst. Growth, 94, 697707, https://doi.org/10.1016/0022-0248(89)90094-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, P. Ola, G. Persson, and G. M. McFarquhar, 2008: Vertical motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 13041322, https://doi.org/10.1175/2007JAS2479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpfendoerfer, L. F., J. Verlinde, J. Y. Harrington, M. D. Shupe, Y.-S. Chen, E. E. Clothiaux, and J.-C. Golaz, 2019: Formation of Arctic stratocumuli through atmospheric radiative cooling. J. Geophys. Res. Atmos., 124, 96449664, https://doi.org/10.1029/2018JD030189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., D. Moisseev, and A. von Lerber, 2016: How dual-polarization radar observations can be used to verify model representation of secondary ice. J. Geophys. Res. Atmos., 121, 10 95410 970, https://doi.org/10.1002/2016JD025381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325362, https://doi.org/10.1016/0021-9991(84)90121-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and L. G. Margolin, 1998: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys., 140, 459480, https://doi.org/10.1006/jcph.1998.5901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., J. Y. Harrington, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part III: Applications and studies within a two-dimensional kinematic model. J. Atmos. Sci., 70, 33023320, https://doi.org/10.1175/JAS-D-12-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., H. Morrison, and J. Y. Harrington, 2014: Dynamical and microphysical evolution during mixed-phase cloud glaciation simulated using the bulk adaptive habit prediction model. J. Atmos. Sci., 71, 41584180, https://doi.org/10.1175/JAS-D-14-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., W. W. Grabowski, and H. T. Ochs, 1998: Simple two-dimensional kinematic framework designed to test warm rain microphysical models. Atmos. Res., 45, 299326, https://doi.org/10.1016/S0169-8095(97)00082-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 2014: Influence of liquid water content and temperature on the form and growth of branched planar snow crystals in a cloud. J. Atmos. Sci., 71, 41274142, https://doi.org/10.1175/JAS-D-14-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, C., and K. Aydin, 1995: Scattering from ice crystals at 94 and 220 GHz millimeter wave frequencies. IEEE Trans. Geosci. Remote Sens., 33, 9399, https://doi.org/10.1109/36.368218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, C., 1964: A system for computing ice phase hydrometeor development. Meteorology Research Inc. Tech. Rep. ARG-64 Pa-121, 30 pp.

  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 34423466, https://doi.org/10.1175/MWR-D-11-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., H. Morrison, M. R. Kumjian, K. J. Reimel, O. P. Prat, S. Lunderman, and M. Morzfeld, 2020: A Bayesian approach for statistical–physical bulk parameterization of rain microphysics. Part II: Idealized Markov chain Monte Carlo experiments. J. Atmos. Sci., 77, 10431064, https://doi.org/10.1175/JAS-D-19-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J. M., and F. Fabry, 2018: Contrasting polarimetric observations of stratiform riming and nonriming events. J. Appl. Meteor. Climatol., 57, 457476, https://doi.org/10.1175/JAMC-D-16-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Rad. Trans., 112, 22342247, https://doi.org/10.1016/j.jqsrt.2011.01.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Y. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, https://doi.org/10.1175/JAS-D-13-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 107 107 107
Full Text Views 46 46 46
PDF Downloads 55 55 55

Radar-Based Bayesian Estimation of Ice Crystal Growth Parameters within a Microphysical Model

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 Universities Space Research Association, Columbia, Maryland
  • 3 Center for Climate Systems Research, Columbia University, New York, New York
  • 4 NASA Goddard Institute for Space Studies, New York, New York
  • 5 Department of Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • 6 National Center for Atmospheric Research, Boulder, Colorado
  • 7 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The potential for polarimetric Doppler radar measurements to improve predictions of ice microphysical processes within an idealized model–observational framework is examined. In an effort to more rigorously constrain ice growth processes (e.g., vapor deposition) with observations of natural clouds, a novel framework is developed to compare simulated and observed radar measurements, coupling a bulk adaptive-habit model of vapor growth to a polarimetric radar forward model. Bayesian inference on key microphysical model parameters is then used, via a Markov chain Monte Carlo sampler, to estimate the probability distribution of the model parameters. The statistical formalism of this method allows for robust estimates of the optimal parameter values, along with (non-Gaussian) estimates of their uncertainty. To demonstrate this framework, observations from Department of Energy radars in the Arctic during a case of pristine ice precipitation are used to constrain vapor deposition parameters in the adaptive habit model. The resulting parameter probability distributions provide physically plausible changes in ice particle density and aspect ratio during growth. A lack of direct constraint on the number concentration produces a range of possible mean particle sizes, with the mean size inversely correlated to number concentration. Consistency is found between the estimated inherent growth ratio and independent laboratory measurements, increasing confidence in the parameter PDFs and demonstrating the effectiveness of the radar measurements in constraining the parameters. The combined Doppler and polarimetric observations produce the highest-confidence estimates of the parameter PDFs, with the Doppler measurements providing a stronger constraint for this case.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert S. Schrom, robert.s.schrom@nasa.gov

Abstract

The potential for polarimetric Doppler radar measurements to improve predictions of ice microphysical processes within an idealized model–observational framework is examined. In an effort to more rigorously constrain ice growth processes (e.g., vapor deposition) with observations of natural clouds, a novel framework is developed to compare simulated and observed radar measurements, coupling a bulk adaptive-habit model of vapor growth to a polarimetric radar forward model. Bayesian inference on key microphysical model parameters is then used, via a Markov chain Monte Carlo sampler, to estimate the probability distribution of the model parameters. The statistical formalism of this method allows for robust estimates of the optimal parameter values, along with (non-Gaussian) estimates of their uncertainty. To demonstrate this framework, observations from Department of Energy radars in the Arctic during a case of pristine ice precipitation are used to constrain vapor deposition parameters in the adaptive habit model. The resulting parameter probability distributions provide physically plausible changes in ice particle density and aspect ratio during growth. A lack of direct constraint on the number concentration produces a range of possible mean particle sizes, with the mean size inversely correlated to number concentration. Consistency is found between the estimated inherent growth ratio and independent laboratory measurements, increasing confidence in the parameter PDFs and demonstrating the effectiveness of the radar measurements in constraining the parameters. The combined Doppler and polarimetric observations produce the highest-confidence estimates of the parameter PDFs, with the Doppler measurements providing a stronger constraint for this case.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert S. Schrom, robert.s.schrom@nasa.gov
Save