• Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019: Tornadogenesis and early tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147, 20452066, https://doi.org/10.1175/MWR-D-18-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caillault, K., and Y. Lemaitre, 1999: Retrieval of three-dimensional wind fields corrected for the time-induced advection problem. J. Atmos. Oceanic Technol., 16, 708722, https://doi.org/10.1175/1520-0426(1999)016<0708:ROTDWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chong, M., J. Testud, and F. Roux, 1983: Three-dimensional wind field analysis from dual-Doppler radar data. Part II: Minimizing the error due to temporal variation. J. Climate Appl. Meteor., 22, 12161226, https://doi.org/10.1175/1520-0450(1983)022<1216:TDWFAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1982: Errors in fixed and moving frame of references: Applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39, 22792300, https://doi.org/10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. Stensrud, 2014: Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar DA. Mon. Wea. Rev., 142, 33263346, https://doi.org/10.1175/MWR-D-14-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., and Coauthors, 2013: A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Wea. Forecasting, 28, 727745, https://doi.org/10.1175/WAF-D-12-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Coauthors, 2016: Storm-scale DA and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the Atmospheric Imaging Radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W. C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393, https://doi.org/10.1175/JAS3489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y., 1999: Single radar recovery of cross-beam wind components using a modified moving frame of reference technique. J. Atmos. Oceanic Technol., 16, 10031016, https://doi.org/10.1175/1520-0426(1999)016<1003:SRROCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y., 2002: An explanation of the wind speed underestimation obtained from a least squares type of single-Doppler radar velocity retrieval method. J. Appl. Meteor., 41, 811823, https://doi.org/10.1175/1520-0450(2002)041<0811:AEOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, Y., H. B. Bluestein, M. M. French, and Z. B. Wienhoff, 2018: Single-Doppler velocity retrieval of the wind field in a tornadic supercell using mobile, phased-array, Doppler radar data. J. Atmos. Oceanic Technol., 35, 16491663, https://doi.org/10.1175/JTECH-D-18-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., C. Qiu, Q. Xu, and P. Zhang, 2004: An improved time interpolation for three-dimensional Doppler wind analysis. J. Appl. Meteor., 43, 13791391, https://doi.org/10.1175/JAM2150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., M. Xue, and Q. Xu, 2007: Using wavelet analysis to detect tornadoes from Doppler radar radial-velocity observations. J. Atmos. Oceanic Technol., 24, 344359, https://doi.org/10.1175/JTECH1989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. B. Richman, and T. M. Smith, 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194211, https://doi.org/10.1175/WAF-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: Strategic plan for NOAA’s Office of Oceanic and Atmospheric Research. NOAA Rep., 29 pp., https://research.noaa.gov/sites/oar/Documents/OARStrategicPlan.pdf.

  • Potvin, C. K., A. Shapiro, T. Y. Yu, J. Gao, and M. Xue, 2009: Using a low-order model to detect and characterize tornadoes in multiple-Doppler radar data. Mon. Wea. Rev., 137, 12301249, https://doi.org/10.1175/2008MWR2446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., A. Shapiro, M. I. Biggerstaff, and J. M. Wurman, 2011: The VDAC technique: A variational method for detecting and characterizing convective vortices in multiple-Doppler radar data. Mon. Wea. Rev., 139, 25932613, https://doi.org/10.1175/2011MWR3638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010: Spatially variable advection correction of radar data. Part I: Theoretical considerations. J. Atmos. Sci., 67, 34453456, https://doi.org/10.1175/2010JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Rahimi, C. K. Potvin, and L. Orf, 2015: On the use of advection correction in trajectory calculations. J. Atmos. Sci., 72, 42614280, https://doi.org/10.1175/JAS-D-15-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype warn-on-forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Wea. Forecasting, 31, 811825, https://doi.org/10.1175/WAF-D-15-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2019: Tornado-resolving ensemble and probabilistic predictions of the 20 May 2013 Newcastle–Moore EF5 tornado. Mon. Wea. Rev., 147, 12151235, https://doi.org/10.1175/MWR-D-18-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn on forecast: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., and Coauthors, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2019: Test of a weather-adaptive dual-resolution hybrid warn-on-forecast analysis and forecast system for several severe weather events. Wea. Forecasting, 34, 18071827, https://doi.org/10.1175/WAF-D-19-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale DA and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 2011: Simulated tornadic vortex signatures of tornado-like vortices having one- and two-celled structures. J. Appl. Meteor. Climatol., 50, 23382342, https://doi.org/10.1175/JAMC-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2018: The role of small-scale vortices in enhancing surface winds and damage in Hurricane Harvey (2017). Mon. Wea. Rev., 146, 713722, https://doi.org/10.1175/MWR-D-17-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2019: On the choice of momentum control variables and covariance modeling for mesoscale data assimilation. J. Atmos. Sci., 76, 89111, https://doi.org/10.1175/JAS-D-18-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., and L. Wei, 2020: A variational method for analyzing vortex flows in radar-scanned tornadic mesocyclones. Part II: Tests with analytically formulated vortices. J. Atmos. Sci., 78, 843861, https://doi.org/10.1175/JAS-D-20-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., K. Nai, and L. Wei, 2007a: An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc., 133, 407415, https://doi.org/10.1002/qj.21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., K. Nai, L. Wei, H. Lu, P. Zhang, S. Liu, and D. Parrish, 2007b: Estimating radar wind observation error and NCEP WRF background wind error covariances from radar radial-velocity innovations. 18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 1B.3, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_123419.htm.

  • Xu, Q., L. Wei, W. Gu, J. Gong, and Q. Zhao, 2010: A 3.5-dimensional variational method for Doppler radar data assimilation and its application to phased-array radar observations. Adv. Meteor., 2010, 797265, https://doi.org/10.1155/2010/797265.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, K. Nai, S. Liu, R. M. Rabin, and Q. Zhao, 2015a: A radar wind analysis system for nowcast applications. Adv. Meteor., 2015, 264515, https://doi.org/10.1155/2015/264515.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, and K. Nai, 2015b: Analyzing vortex winds in radar-observed tornadic mesocyclones for nowcast applications. Wea. Forecasting, 30, 11401157, https://doi.org/10.1175/WAF-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, J. Gao, and Q. Zhao, K. Nai and S. Liu, 2016: Multistep variational data assimilation: Important issues and a spectral approach. Tellus, 68A, 31110, https://doi.org/10.3402/tellusa.v68.31110.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, and K. Nai, 2017: A three-step method for estimating vortex center locations in four-dimensional space from radar-observed tornadic mesocyclones. J. Atmos. Oceanic Technol., 34, 22752281, https://doi.org/10.1175/JTECH-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and Q. Xu, 1996: Statistical errors in variational data assimilation—A theoretical one-dimensional analysis applied to Doppler wind retrieval. J. Atmos. Sci., 53, 25632577, https://doi.org/10.1175/1 520-0469(1996)053<2563:SEIVDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and T. Gal-Chen, 1996: Single-Doppler wind retrieval in the moving frame of reference. J. Atmos. Sci., 53, 26092623, https://doi.org/10.1175/1520-0469(1996)053<2609:SDWRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8 8 8
Full Text Views 3 3 3
PDF Downloads 4 4 4

A Variational Method for Analyzing Vortex Flows in Radar-Scanned Tornadic Mesocyclones. Part I: Formulations and Theoretical Considerations

View More View Less
  • 1 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

A variational method is formulated with theoretical considerations for analyzing vortex flows in Doppler radar–scanned tornadic mesocyclones. The method has the following features. (i) The vortex center axis (estimated as a continuous function of time and height in the four-dimensional space) is used as the vertical coordinate, so the coordinate system used for the analysis is slantwise curvilinear and nonorthogonal in general. (ii) The vortex flow (VF), defined by the three-dimensional vector wind minus the horizontal moving velocity of vortex center axis, is expressed in terms of the covariant basis vectors (tangent to the coordinate curves), so its axisymmetric part can be properly defined in that slantwise-curvilinear coordinate system. (iii) To satisfy the mass continuity automatically, the axisymmetric part is expressed by the scalar fields of azimuthally averaged tangential velocity and cylindrical streamfunction and the remaining asymmetric part is expressed by the scalar fields of streamfunction and vertically integrated velocity potential. (iv) VF-dependent covariance functions are formulated for these scalar variables and then deconvoluted to construct the square root of background error covariance matrix analytically with the latter used to transform the control vector to precondition the cost function. (v) The deconvoluted covariance functions and their transformed control variables satisfy two required boundary conditions (i.e., zero vertical velocity at the lower rigid boundary and zero cross-axis velocity along the vortex center axis), so the analyzed VF satisfies not only the mass continuity but also the two boundary conditions automatically.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qin Xu, qin.xu@noaa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0159.1.

Abstract

A variational method is formulated with theoretical considerations for analyzing vortex flows in Doppler radar–scanned tornadic mesocyclones. The method has the following features. (i) The vortex center axis (estimated as a continuous function of time and height in the four-dimensional space) is used as the vertical coordinate, so the coordinate system used for the analysis is slantwise curvilinear and nonorthogonal in general. (ii) The vortex flow (VF), defined by the three-dimensional vector wind minus the horizontal moving velocity of vortex center axis, is expressed in terms of the covariant basis vectors (tangent to the coordinate curves), so its axisymmetric part can be properly defined in that slantwise-curvilinear coordinate system. (iii) To satisfy the mass continuity automatically, the axisymmetric part is expressed by the scalar fields of azimuthally averaged tangential velocity and cylindrical streamfunction and the remaining asymmetric part is expressed by the scalar fields of streamfunction and vertically integrated velocity potential. (iv) VF-dependent covariance functions are formulated for these scalar variables and then deconvoluted to construct the square root of background error covariance matrix analytically with the latter used to transform the control vector to precondition the cost function. (v) The deconvoluted covariance functions and their transformed control variables satisfy two required boundary conditions (i.e., zero vertical velocity at the lower rigid boundary and zero cross-axis velocity along the vortex center axis), so the analyzed VF satisfies not only the mass continuity but also the two boundary conditions automatically.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Qin Xu, qin.xu@noaa.gov

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0159.1.

Save