• Anders, E. H., D. Lecoanet, and B. P. Brown, 2019: Entropy rain: Dilution and compression of thermals in stratified domains. Astrophys. J., 884, 65, https://doi.org/10.3847/1538-4357/ab3644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 2000: An Introduction to Fluid Dynamics. Cambridge University Press, 658 pp.

    • Crossref
    • Export Citation
  • Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, D., and H. Johari, 2010: Impact of buoyancy on vortex ring development in the near field. Exp. Fluids, 48, 737745, https://doi.org/10.1007/s00348-009-0761-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandenburg, A., 2016: Stellar mixing length theory with entropy rain. Astrophys. J., 832, 19, https://doi.org/10.3847/0004-637X/832/1/6.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description of 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. P. Siebesma, 2010: Analytic expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, https://doi.org/10.1002/qj.640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132329, https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escudier, M. P., and T. Maxworthy, 1973: On the motion of turbulent thermals. J. Fluid Mech., 61, 541552, https://doi.org/10.1017/S0022112073000856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glass, M., and T. N. Carlson, 1963: The growth characteristics of small cumulus clouds. J. Atmos. Sci., 20, 397406, https://doi.org/10.1175/1520-0469(1963)020<0397:TGCOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical investigation of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez-Deckers, D., and S. C. Sherwood, 2018: On the role of entrainment in the fate of cumulus thermals. J. Atmos. Sci., 75, 39113924, https://doi.org/10.1175/JAS-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 27652778, https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convection parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, https://doi.org/10.1175/JAS3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyle, T. G., W. R. Sand, and D. J. Musil, 1976: Fitting measurements of updraft profiles to model profiles. Mon. Wea. Rev., 104, 611617, https://doi.org/10.1175/1520-0493(1976)104<0611:FMOTUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, A. C. H., B. Zhao, A. W. K. Law, and E. E. Adams, 2015: A numerical and analytic study of the effect of aspect ratio on the behavior of a round thermal. Environ. Fluid Mech., 15, 85108, https://doi.org/10.1007/s10652-014-9362-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lecoanet, D., and N. Jeevanjee, 2019: Entrainment in resolved, dry thermals. J. Atmos. Sci., 76, 37853801, https://doi.org/10.1175/JAS-D-18-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKim, B., N. Jeevanjee, and D. Lecoanet, 2020: Buoyancy-driven entrainment in dry thermals. Quart. J. Roy. Meteor. Soc., 146, 415425, https://doi.org/10.1002/qj.3683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts: Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 123, https://doi.org/10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel method for shallow cumulus convection. J. Atmos. Sci., 59, 16551668, https://doi.org/10.1175/1520-0469(2002)059<1655:AMMFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., W. M. Hannah, and H. Morrison, 2019: The influence of vertical wind shear on moist thermals. J. Atmos. Sci., 76, 16451659, https://doi.org/10.1175/JAS-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020a: Thermal chains and entrainment in cumulus updrafts: Part II: Analysis of idealized simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and G. L. Mullendore, 2020b: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, J. M., 1961: Experiments on the penetration of an interface by buoyant thermals. J. Fluid Mech., 11, 369384, https://doi.org/10.1017/S0022112061000585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau-Rizzi, R., D. J. Kirshbaum, and M. K. Yau, 2017: Initiation of deep convection over an idealized mesoscale convergence line. J. Atmos. Sci., 74, 835853, https://doi.org/10.1175/JAS-D-16-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., 1961: An observational study of cumulus. J. Meteor., 18, 451467, https://doi.org/10.1175/1520-0469(1961)018<0451:AOSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1957: Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech., 2, 583594, https://doi.org/10.1017/S0022112057000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, and M. Colin, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shivamoggi, B. K., 2010: Hydrodynamic impulse in a compressible fluid. Phys. Lett., 374A, 47364740, https://doi.org/10.1016/j.physleta.2010.09.062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1957: Buoyant vortex rings. Proc. Roy. Soc. London, 239A, 6175, https://doi.org/10.1098/rspa.1957.0022.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., A. W. Lau, A. C. Lai, and E. E. Adams, 2013: On the internal vorticity and density structures of miscible thermals. J. Fluid Mech., 722, R5, https://doi.org/10.1017/jfm.2013.158.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 15 15 15
Full Text Views 8 8 8
PDF Downloads 9 9 9

Comparing Growth Rates of Simulated Moist and Dry Convective Thermals

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • 2 Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
  • 3 ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
  • 4 Department of Meteorology, Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

The spreading rates of convective thermals are linked to their net entrainment, and previous literature has suggested differences in spreading rates between moist and dry thermals. In this study, growth rates of idealized numerically simulated axisymmetric dry and moist convective thermals are directly compared. In an environment with dry-neutral stratification, the increase of thermal radius with height dR/dz is a larger by a factor of 1.7 for dry thermals relative to moist thermals. The fractional change in thermal volume ε is also greater for dry thermals within a distance of ~4 radii from the initial thermal height. Values of dR/dz are nearly constant with height for both moist and dry thermals consistent with classical theory based on dimensional analysis. The simulations are also consistent with theory relating impulse, circulation, and spreading rate for dry thermals proposed in previous papers and extended here to moist thermals, predicting they will spread less than dry thermals. Tests adding heating to dry thermals, either spread uniformly across the thermal volume or concentrated in the inner core, indicate that dR/dz and ε are smaller for moist thermals because latent heating is confined mostly to their cores. Additional axisymmetric moist simulations using modified lapse rates and large-eddy simulations support this analysis. Overall, these results indicate that slow spreading rates are a fundamental feature of moist thermals caused by latent heating that alters the spatial distribution of buoyancy within them relative to dry thermals.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: H. Morrison, hmorrison@ucar.edu

Abstract

The spreading rates of convective thermals are linked to their net entrainment, and previous literature has suggested differences in spreading rates between moist and dry thermals. In this study, growth rates of idealized numerically simulated axisymmetric dry and moist convective thermals are directly compared. In an environment with dry-neutral stratification, the increase of thermal radius with height dR/dz is a larger by a factor of 1.7 for dry thermals relative to moist thermals. The fractional change in thermal volume ε is also greater for dry thermals within a distance of ~4 radii from the initial thermal height. Values of dR/dz are nearly constant with height for both moist and dry thermals consistent with classical theory based on dimensional analysis. The simulations are also consistent with theory relating impulse, circulation, and spreading rate for dry thermals proposed in previous papers and extended here to moist thermals, predicting they will spread less than dry thermals. Tests adding heating to dry thermals, either spread uniformly across the thermal volume or concentrated in the inner core, indicate that dR/dz and ε are smaller for moist thermals because latent heating is confined mostly to their cores. Additional axisymmetric moist simulations using modified lapse rates and large-eddy simulations support this analysis. Overall, these results indicate that slow spreading rates are a fundamental feature of moist thermals caused by latent heating that alters the spatial distribution of buoyancy within them relative to dry thermals.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: H. Morrison, hmorrison@ucar.edu
Save