• Barker, H. W., 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53, 22892303, https://doi.org/10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J. Li, B. Yi, and P. Yang, 2015: Estimation of errors in two-stream approximations of the solar radiative transfer equation for cloudy-sky conditions. J. Atmos. Sci., 72, 40534074, https://doi.org/10.1175/JAS-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bäuml, G., A. Chlond, and E. Roeckner, 2004: Estimating the PPH-bias for simulations of convective and stratiform clouds. Atmos. Res., 72, 317328, https://doi.org/10.1016/j.atmosres.2004.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berk, A., G. P. Anderson, P. K. Acharya, and E. P. Shettle, 2008: MODTRAN5 version 2 User’s Manual. Spectral Sciences, Inc., and Air Force Geophysics Laboratory Doc., 99 pp.

  • Borde, R., and H. Isaka, 1996: Radiative transfer in multifractal clouds. J. Geophys. Res., 101, 29 46129 478, https://doi.org/10.1029/96JD02200.

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994a: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, S. Gollmer, and Harshvardhan, 1994b: Independent pixel and Monte Carlo estimate of stratocumulus albedo. J. Atmos. Sci., 51, 37763790, https://doi.org/10.1175/1520-0469(1994)051<3776:IPAMCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairns, B., A. A. Lacie, and B. E. Carlson, 2000: Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700714, https://doi.org/10.1175/1520-0469(2000)057<0700:AWICAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, B., Q. Fu, U. Lohmann, G. G. Mace, K. Sassen, and J. M. Comstock, 2002: High-cloud horizontal inhomogeneity and solar albedo bias. J. Climate, 15, 23212339, https://doi.org/10.1175/1520-0442(2002)015<2321:HCHIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 1993: A general solution for stochastic radiative transfer. Geophys. Res. Lett., 20, 20752078, https://doi.org/10.1029/93GL02347.

  • Gabriel, P. M., and K. F. Evans, 1996: Simple radiative transfer methods for calculating domain-averaged solar fluxes in inhomogeneous clouds. J. Atmos. Sci., 53, 858877, https://doi.org/10.1175/1520-0469(1996)053<0858:SRTMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

  • Hansen, J. E., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609662, https://doi.org/10.1175/1520-0493(1983)111<0609:ETDGMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., S. A. K. Schäfer, C. Klinger, J.-C. Chiu, and B. Mayer, 2016: Representing 3D cloud-radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res. Atmos., 121, 85838599, https://doi.org/10.1002/2016JD024875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y. X., and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., Y.-C. Zhang, A. Del Genio, G. Schmidt, and M. Kelley, 2019: Cloud scattering impact on thermal radiative transfer and global longwave radiation. J. Quant. Spectrosc. Radiat. Transfer, 239, 106669, https://doi.org/10.1016/j.jqsrt.2019.106669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, https://doi.org/10.1175/JTECH-1694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and Harshvardhan, 1986: Comparative accuracy of selected multiple scattering approximations. J. Atmos. Sci., 43, 784801, https://doi.org/10.1175/1520-0469(1986)043<0784:CAOSMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, https://doi.org/10.1109/TGRS.2012.2227333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madhavan, B. L., J. Kalisch, and A. Macke, 2016: Shortwave surface radiation network for observing small-scalecloud inhomogeneity fields. Atmos. Meas. Tech., 9, 11531166, https://doi.org/10.5194/amt-9-1153-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, J. L., M. J. Prather, and J. E. Penner, 2007: Global atmospheric chemistry: Integrating over fractional cloud cover. J. Geophys. Res., 112, D11306, https://doi.org/10.1029/2006JD008007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and H. W. Barker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301330, https://doi.org/10.1002/qj.49712555316.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and R. Cahalan, 2005: Cloud inhomogeneity from MODIS. J. Climate, 18, 51105124, https://doi.org/10.1175/JCLI3591.1.

  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 2015: Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c. Geosci. Model Dev., 8, 25872595, https://doi.org/10.5194/gmd-8-2587-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale variations of clouds for the Earth’s radiation budget. J. Climate, 15, 557585, https://doi.org/10.1175/1520-0442(2002)015<0557:IOTOMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite, and reanalysis data. J. Climate, 19, 153192, https://doi.org/10.1175/JCLI3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., and R. J. Hogan, 2008: Tripleclouds: An efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height. J. Climate, 21, 23522370, https://doi.org/10.1175/2007JCLI1940.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., H. Song, P.-L. Ma, V. E. Larson, M. Wang, X. Dong, and J. Wang, 2019: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: Satellite observations and implications for warm rain simulations in climate models. Atmos. Chem. Phys., 19, 10771096, https://doi.org/10.5194/acp-19-1077-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 79 79 47
Full Text Views 25 25 10
PDF Downloads 31 31 13

An Efficient and Accurate Algorithm for Computing Grid-Averaged Solar Fluxes for Horizontally Inhomogeneous Clouds

View More View Less
  • 1 NASA Goddard Institute for Space Studies, New York, New York
© Get Permissions
Restricted access

Abstract

A computationally efficient method is presented to account for the horizontal cloud inhomogeneity by using a radiatively equivalent plane-parallel homogeneous (PPH) cloud. The algorithm can accurately match the calculations of the reference (rPPH) independent column approximation (ICA) results but uses only the same computational time required for a single plane-parallel computation. The effective optical depth of this synthetic sPPH cloud is derived by exactly matching the direct transmission to that of the inhomogeneous ICA cloud. The effective scattering asymmetry factor is found from a precalculated albedo inverse lookup table that is allowed to vary over the range from −1.0 to 1.0. In the special cases of conservative scattering and total absorption, the synthetic method is exactly equivalent to the ICA, with only a small bias (about 0.2% in flux) relative to ICA resulting from imperfect interpolation in using the lookup tables. In principle, the ICA albedo can be approximated accurately regardless of cloud inhomogeneity. For a more complete comparison, the broadband shortwave albedo and transmission calculated from the synthetic sPPH cloud and averaged over all incident directions have RMS biases of 0.26% and 0.76%, respectively, for inhomogeneous clouds over a wide variation of particle size. The advantages of the synthetic PPH method are that 1) it is not required that all the cloud subcolumns have uniform microphysical characteristic, 2) it is applicable to any 1D radiative transfer scheme, and 3) it can handle arbitrary cloud optical depth distributions and an arbitrary number of cloud subcolumns with uniform computational efficiency.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhonghai Jin, zhonghai.jin@nasa.gov

Abstract

A computationally efficient method is presented to account for the horizontal cloud inhomogeneity by using a radiatively equivalent plane-parallel homogeneous (PPH) cloud. The algorithm can accurately match the calculations of the reference (rPPH) independent column approximation (ICA) results but uses only the same computational time required for a single plane-parallel computation. The effective optical depth of this synthetic sPPH cloud is derived by exactly matching the direct transmission to that of the inhomogeneous ICA cloud. The effective scattering asymmetry factor is found from a precalculated albedo inverse lookup table that is allowed to vary over the range from −1.0 to 1.0. In the special cases of conservative scattering and total absorption, the synthetic method is exactly equivalent to the ICA, with only a small bias (about 0.2% in flux) relative to ICA resulting from imperfect interpolation in using the lookup tables. In principle, the ICA albedo can be approximated accurately regardless of cloud inhomogeneity. For a more complete comparison, the broadband shortwave albedo and transmission calculated from the synthetic sPPH cloud and averaged over all incident directions have RMS biases of 0.26% and 0.76%, respectively, for inhomogeneous clouds over a wide variation of particle size. The advantages of the synthetic PPH method are that 1) it is not required that all the cloud subcolumns have uniform microphysical characteristic, 2) it is applicable to any 1D radiative transfer scheme, and 3) it can handle arbitrary cloud optical depth distributions and an arbitrary number of cloud subcolumns with uniform computational efficiency.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhonghai Jin, zhonghai.jin@nasa.gov
Save