• Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 12041236, https://doi.org/10.1175/1520-0469(1995)052<1204:AMFPMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, and L.-P. Wang, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys., 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061015, https://doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294, https://doi.org/10.1175/1520-0469(2000)057<0284:AFMFTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174201, https://doi.org/10.1016/0021-9991(84)90143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., R. T. Bruintjes, and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 14491469, https://doi.org/10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egan, B. A., and J. R. Mahoney, 1972: Numerical modeling of advection and diffusion of urban area source pollutants. J. Appl. Meteor., 11, 312322, https://doi.org/10.1175/1520-0450(1972)011<0312:NMOAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816, https://doi.org/10.1175/2007JAS2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., M. Andrejczuk, and L.-P. Wang, 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301, https://doi.org/10.1016/j.atmosres.2010.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysics model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and et al. , 1998: Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS. Geophys. Res. Lett., 25, 13631366, https://doi.org/10.1029/98GL00299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110, https://doi.org/10.1016/S0169-8095(96)00005-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, https://doi.org/10.1016/S0169-8095(00)00064-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., N. Benmoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and et al. , 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., S. Tanelli, A. Battaglia, and A. Tatarevic, 2014: Evaluation of EarthCARE cloud profiling radar Doppler velocity measurements in particle sedimentation regimes. J. Atmos. Oceanic Technol., 31, 366386, https://doi.org/10.1175/JTECH-D-11-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovetz, A., and B. Olund, 1969: The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 10601065, https://doi.org/10.1175/1520-0469(1969)026<1060:TEOCAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., and J.-J. Baik, 2017: A physically based autoconversion parameterization. J. Atmos. Sci., 74, 15991616, https://doi.org/10.1175/JAS-D-16-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., J.-J. Baik, and J.-Y. Han, 2015: Effects of turbulence on warm clouds and precipitation with various aerosol concentrations. Atmos. Res., 153, 1933, https://doi.org/10.1016/j.atmosres.2014.07.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H., A. M. Fridlind, and A. S. Ackerman, 2019: An evaluation of size-resolved cloud microphysics scheme numerics for use with radar observations. Part I: Collision–coalescence. J. Atmos. Sci., 76, 247263, https://doi.org/10.1175/JAS-D-18-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. L. Kogan, D. K. Lilly, and M. P. Khairoutdinov, 1997: Variational optimization method for calculation of cloud drop growth in an Eulerian drop-size framework. J. Atmos. Sci., 54, 24932504, https://doi.org/10.1175/1520-0469(1997)054<2493:VOMFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, J. B., and K. B. Widener, 2005: W-band ARM cloud radar. 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.3, https://ams.confex.com/ams/pdfpapers/95978.pdf.

  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardo, L. H., H. Morrison, L. A. T. Machado, J. Y. Harrington, and Z. J. Lebo, 2020: Drop size distribution broadening mechanisms in a bin microphysics Eulerian model. J. Atmos. Sci., 77, 32493273, https://doi.org/10.1175/JAS-D-20-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and H. Krugliak, 2008a: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357374, https://doi.org/10.1175/2007JAS2358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., L. Magaritz, A. Khain, O. Krasnov, and A. Sterkin, 2008b: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in a nonmixing limit. J. Atmos. Sci., 65, 20642086, https://doi.org/10.1175/2007JAS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Rémillard, J., and et al. , 2017: Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. J. Appl. Meteor. Climatol., 56, 32633283, https://doi.org/10.1175/JAMC-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Butterworth Heinemann, 290 pp.

  • Seeßelberg, M., T. Trautmann, and M. Thorn, 1996: Stochastic simulations as a benchmark for mathematical methods solving the coalescence equation. Atmos. Res., 40, 3348, https://doi.org/10.1016/0169-8095(95)00024-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265281, https://doi.org/10.1016/S0169-8095(01)00126-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Quart. J. Roy. Meteor. Soc., 136, 17531762, https://doi.org/10.1002/qj.684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 11231144, https://doi.org/10.1002/fld.1071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and S. Bretherton, 1996: A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow. J. Comput. Phys., 129, 284295, https://doi.org/10.1006/jcph.1996.0250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., and W. W. Grabowski, 2009: The role of air turbulence in warm rain initiation. Atmos. Sci. Lett., 10, 18, https://doi.org/10.1002/asl.210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., Y. Xue, and W. W. Grabowski, 2007: A bin integral method for solving the kinetic collection equation. J. Comput. Phys., 226, 5988, https://doi.org/10.1016/j.jcp.2007.03.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witte, M. K., P. Y. Chuang, O. Ayala, L.-P. Wang, and G. Feingold, 2019: Comparison of observed and simulated drop size distributions from large-eddy simulations with bin microphysics. Mon. Wea. Rev., 147, 477493, https://doi.org/10.1175/MWR-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and et al. , 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyszogrodzki, A. A., W. W. Grabowski, L.-P. Wang, and O. Ayala, 2013: Turbulent collision-coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 84718487, https://doi.org/10.5194/acp-13-8471-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 50 50 50
Full Text Views 23 23 23
PDF Downloads 36 36 36

An Evaluation of Size-Resolved Cloud Microphysics Scheme Numerics for Use with Radar Observations. Part II: Condensation and Evaporation

View More View Less
  • 1 a Department of Atmospheric Science, Kongju National University, Gongju, South Korea
  • | 2 b NASA Goddard Institute for Space Studies, New York, New York
© Get Permissions
Restricted access

Abstract

Accurate numerical modeling of clouds and precipitation is essential for weather forecasting and climate change research. While size-resolved (bin) cloud microphysics models predict particle size distributions without imposing shapes, results are subject to artificial size distribution broadening owing to numerical diffusion associated with various processes. Whereas Part I of this study addressed collision–coalescence, here we investigate numerical diffusion that occurs in solving condensation and evaporation. In a parcel model framework, all of the numerical schemes examined converge to one solution of condensation and evaporation as the mass grid is refined, and the advection-based schemes are recommended over the reassigning schemes. Including Eulerian vertical advection in a column limits the convergence to some extent, but that limitation occurs at a sufficiently fine mass grid, and the number of iterations in solving vertical advection should be minimized to reduce numerical diffusion. Insubstantial numerical diffusion in solving condensation can be amplified if collision–coalescence is also active, which in turn can be substantially diminished if turbulence effects on collision are incorporated. Large-eddy simulations of a drizzling stratocumulus field reveal that changes in moments of Doppler spectra obtained using different mass grids are consistent with those obtained from the simplified framework, and that spectral moments obtained using a mass grid designed to effectively reduce numerical diffusion are generally closer to observations. Notable differences between the simulations and observations still exist, and our results suggest a need to consider whether factors other than numerical diffusion in the fundamental process schemes employed can cause such differences.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-18-0174.1

Corresponding author: Hyunho Lee, hyunho.lee@kongju.ac.kr

Abstract

Accurate numerical modeling of clouds and precipitation is essential for weather forecasting and climate change research. While size-resolved (bin) cloud microphysics models predict particle size distributions without imposing shapes, results are subject to artificial size distribution broadening owing to numerical diffusion associated with various processes. Whereas Part I of this study addressed collision–coalescence, here we investigate numerical diffusion that occurs in solving condensation and evaporation. In a parcel model framework, all of the numerical schemes examined converge to one solution of condensation and evaporation as the mass grid is refined, and the advection-based schemes are recommended over the reassigning schemes. Including Eulerian vertical advection in a column limits the convergence to some extent, but that limitation occurs at a sufficiently fine mass grid, and the number of iterations in solving vertical advection should be minimized to reduce numerical diffusion. Insubstantial numerical diffusion in solving condensation can be amplified if collision–coalescence is also active, which in turn can be substantially diminished if turbulence effects on collision are incorporated. Large-eddy simulations of a drizzling stratocumulus field reveal that changes in moments of Doppler spectra obtained using different mass grids are consistent with those obtained from the simplified framework, and that spectral moments obtained using a mass grid designed to effectively reduce numerical diffusion are generally closer to observations. Notable differences between the simulations and observations still exist, and our results suggest a need to consider whether factors other than numerical diffusion in the fundamental process schemes employed can cause such differences.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-18-0174.1

Corresponding author: Hyunho Lee, hyunho.lee@kongju.ac.kr
Save