Alessandri, A., F. Catalano, M. De Felice, B. Van Den Hurk, F. Doblas Reyes, S. Boussetta, G. Balsamo, and P. A. Miller, 2017: Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth. Climate Dyn ., 49, 1215–1237, https://doi.org/10.1007/s00382-016-3372-4.
Al-Yaari, A., and Coauthors, 2017: Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens. Environ., 193, 257–273, https://doi.org/10.1016/j.rse.2017.03.010.
Ardilouze, C., and Coauthors, 2017: Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Climate Dyn ., 49, 3959–3974, https://doi.org/10.1007/s00382-017-3555-7.
Ardilouze, C., L. Batté, M. Déqué, E. van Meijgaard, and B. van den Hurk, 2019: Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments. Climate Dyn., 52, 4011–4026, https://doi.org/10.1007/s00382-018-4358-1.
Ayarzagüena, B., and Coauthors, 2018: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos. Chem. Phys., 18, 11 277–11 287, https://doi.org/10.5194/acp-18-11277-2018.
Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 7528–7536, https://doi.org/10.1002/2017GL074434.
Baggett, C. F., K. M. Nardi, S. J. Childs, S. N. Zito, E. A. Barnes, and E. D. Maloney, 2018: Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden-Julian oscillation. J. Geophys. Res. Atmos., 123, 12 661–12 675, https://doi.org/10.1029/2018JD029059.
Balmaseda, M. A., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561.
Balmaseda, M. A., and Coauthors, 2015: The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr., 8, S80–S97, https://doi.org/10.1080/1755876X.2015.1022329.
Balsamo, G., and Coauthors, 2018: Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sens ., 10, 2038, https://doi.org/10.3390/rs10122038.
Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L’Heureux, 2019: Deterministic skill of ENSO predictions from the North American multimodel ensemble. Climate Dyn ., 53, 7215–7234, https://doi.org/10.1007/s00382-017-3603-3.
Batté, L., C. Ardilouze, and M. Déqué, 2018: Forecasting West African heat waves at sub-seasonal and seasonal time scales. Mon. Wea. Rev., 146, 889–907, https://doi.org/10.1175/MWR-D-17-0211.1.
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.
Becker, E. J., 2017: Prediction of short-term climate extremes with a multimodel ensemble. Climate Extremes: Patterns and Mechanisms, S.-Y. Wang et al, Eds., John Wiley and Sons, 347–359.
Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473.
Bergman, D. L., L. Magnusson, J. Nilsson, and F. Vitart, 2019: Seasonal forecasting of tropical cyclone landfall using ECMWF’s system 4. Wea. Forecasting, 34, 1239–1255, https://doi.org/10.1175/WAF-D-18-0032.1.
Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson, and A. Weisheimer, 2019: The Northern Hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Climate Dyn ., 52, 3759–3771, https://doi.org/10.1007/s00382-018-4371-4.
Bilodeau, B., M. Carrera, A. Russell, X. Wang, and S. Belair, 2016: Impacts of SMAP data in Environment Canada’s Regional Deterministic Prediction System. 2016Int. Geoscience and Remote Sensing Symp ., Beijing, China, Institute of Electrical and Electronics Engineers, 5233–5236, https://doi.org/10.1109/IGARSS.2016.7730363.
Blockley, E. W., and K. A. Peterson, 2018: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018.
Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016.
Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, https://doi.org/10.1038/nature10946.
Borchert, L., W. A. Müller, and J. Baehr, 2018: Atlantic ocean heat transport influences interannual-to-decadal surface temperature predictability in the North Atlantic region. J. Climate, 31, 6763–6782, https://doi.org/10.1175/JCLI-D-17-0734.1.
Browne, P. A., P. de Rosnay, H. Zuo, A. Bennett, and A. N. D. A. Dawson, 2019: Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system. Remote Sens ., 11, 234, https://doi.org/10.3390/rs11030234.
Brune, S., A. Düsterhus, H. Pohlmann, W. A. Müller, and J. Baehr, 2018: Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dyn ., 51, 1947–1970, https://doi.org/10.1007/s00382-017-3991-4.
Buckley, M. W., T. DelSole, M. S. Lozier, and L. Li, 2019: Predictability of North Atlantic sea surface temperature and upper-ocean heat content. J. Climate, 32, 3005–3023, https://doi.org/10.1175/JCLI-D-18-0509.1.
Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018.
Butler, A. H., and Coauthors, 2016: The Climate-system Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413–1427, https://doi.org/10.1002/qj.2743.
Butler, A. H., and Coauthors, 2019: Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 223–241.
Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.
Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Caron, L.-P., L. Hermonson, A. Dobbin, J. Imbers, L. Lledó, and G. A. Vecchi, 2018: How skillful are the multiannual forecasts of Atlantic hurricane activity? Bull. Amer. Meteor. Soc., 99, 403–413, https://doi.org/10.1175/BAMS-D-17-0025.1.
Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I. Kang, and N. Caltabiano, 2018: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99, 479–490, https://doi.org/10.1175/BAMS-D-16-0286.1.
Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 1919–1934, https://doi.org/10.1175/JCLI-D-15-0486.1.
Chen, Z., J. Liu, M. Song, Q. Yang, and S. Xu, 2017: Impacts of assimilating satellite sea ice concentration and thickness on Arctic sea ice prediction in the NCEP Climate Forecast System. J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1.
Chevallier, M., and Coauthors, 2017: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dyn., 49, 1107–1136, https://doi.org/10.1007/s00382-016-2985-y.
Chevallier, M., F. Massonnet, H. Goessling, V. Guémas, and T. Jung, 2019: The role of sea ice in sub-seasonal predictability. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 201–221.
Chikamoto, Y., A. Timmermann, M. J. Widlansky, M. A. Balmaseda, and L. Stott, 2017: Multi-year predictability of climate, drought, and wildfire in southwestern North America. Sci. Rep., 7, 6568, https://doi.org/10.1038/s41598-017-06869-7.
Christensen, H. M., and J. Berner, 2019: From reliable weather forecasts to skilful climate response: A dynamical systems approach. Quart. J. Roy. Meteor. Soc., 145, 1052–1069, https://doi.org/10.1002/qj.3476.
Clark, R. T., P. E. Bett, H. E. Thornton, and A. A Scaife, 2017: Skilful seasonal predictions for the European energy industry. Environ. Res. Lett., 12, 024002, https://doi.org/10.1088/1748-9326/aa57ab.
Coelho, C. A. S., M. A. F. Firpo, and F. M. de Andrade, 2018: A verification framework for South American sub-seasonal precipitation predictions. Meteor. Z., 27, 503–520, https://doi.org/10.1127/metz/2018/0898.
de Andrade, F. M., C. A. S. Coelho, and I. F. A. Cavalcanti, 2019: Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) Prediction Project models. Climate Dyn ., 52, 5451–5475, https://doi.org/10.1007/s00382-018-4457-z.
DeFlorio, M., D. Waliser, B. Guan, F. Ralph, and F. Vitart, 2019: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn ., 52, 3039–3060, https://doi.org/10.1007/s00382-018-4309-x.
DelSole, T., and M. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615–626, https://doi.org/10.1175/MWR-D-15-0218.1.
DelSole, T., L. Trenary, M. K. Tippett, and K. Pegion, 2017: Predictability of week-3–4 average temperature and precipitation over the contiguous United States. J. Climate, 30, 3499–3512, https://doi.org/10.1175/JCLI-D-16-0567.1.
DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 1099–1154, https://doi.org/10.1002/2014RG000478.
Dias, D. F., A. Subramanian, L. Zanna, and A. J. Miller, 2019: Remote and local influences in forecasting Pacific SST: A linear inverse model and a multimodel ensemble study. Climate Dyn ., 52, 3183–3201, https://doi.org/10.1007/s00382-018-4323-z.
DiNezio, P. N., and Coauthors, 2017a: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44, 11 624–11 635, https://doi.org/10.1002/2017GL074904.
DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017b: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn ., 49, 4237–4261, https://doi.org/10.1007/s00382-017-3575-3.
Dirkson, A., W. J. Merryfield, and A. Monahan, 2017: Impacts of sea ice thickness initialization on seasonal Arctic sea ice predictions. J. Climate, 30, 1001–1017, https://doi.org/10.1175/JCLI-D-16-0437.1.
Dirmeyer, P. A., and S. Halder, 2016: Sensitivity of numerical weather forecasts to initial soil moisture variations in CFSv2. Wea. Forecasting, 31, 1973–1983, https://doi.org/10.1175/WAF-D-16-0049.1.
Dirmeyer, P. A., and S. Halder, 2017: Application of the land–atmosphere coupling paradigm to the operational Coupled Forecast System (CFSv2). J. Hydrometeor., 18, 85–108, https://doi.org/10.1175/JHM-D-16-0064.1.
Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018a: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 111–13 127, https://doi.org/10.1029/2018JD029103.
Dirmeyer, P. A., and Coauthors, 2018b: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375–392, https://doi.org/10.1175/JHM-D-17-0152.1.
Dirmeyer, P. A., P. Gentine, M. B. Ek, and G. Balsamo, 2019: Land surface processes relevant to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 166–182.
Dobrynin, M., and Coauthors, 2018: Improved teleconnection-based dynamical seasonal predictions of boreal winter. Geophys. Res. Lett., 45, 3605–3614, https://doi.org/10.1002/2018GL077209.
Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño southern oscillation to the stratosphere. Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596.
Domeisen, D. I. V., and Coauthors, 2020a: The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920.
Domeisen, D. I. V., and Coauthors, 2020b: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019jd030923.
Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011.
Dunstone, N. J., D. M. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809–814, https://doi.org/10.1038/ngeo2824.
Dunstone, N. J., and Coauthors, 2018: Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett., 45, 3246–3254, https://doi.org/10.1002/2017GL076337.
Düsterhus, A., 2020: Seasonal statistical–dynamical prediction of the North Atlantic Oscillation by probabilistic post-processing and its evaluation. Nonlinear Processes Geophys ., 27, 121–131, https://doi.org/10.5194/npg-27-121-2020.
Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 5620–5628, https://doi.org/10.1002/2014GL061146.
Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918.
Ferranti, L., L. Magnusson, F. Vitart, and D. S. Richardson, 2018: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? Quart. J. Roy. Meteor. Soc., 144, 1788–1802, https://doi.org/10.1002/qj.3341.
Flato, G. M., 2011: Earth system models: An overview. Wiley Interdiscip. Rev.: Climate Change, 2, 783–800, https://doi.org/10.1002/wcc.148.
Fujii, Y., and Coauthors, 2015: Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective. Quart. J. Roy. Meteor. Soc., 141, 2481–2496, https://doi.org/10.1002/qj.2579.
Funk, C., and Coauthors, 2019: Recognizing the Famine Early Warning Systems Network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteor. Soc., 100, 1011–1027, https://doi.org/10.1175/BAMS-D-17-0233.1.
Garfinkel, C. I., and C. Schwartz, 2017: MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models. Geophys. Res. Lett., 44, 10 054–10 062, https://doi.org/10.1002/2017GL074470.
Garfinkel, C. I., D. W. Waugh, and E. Gerber, 2013: Effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 2077–2095, https://doi.org/10.1175/JCLI-D-12-00301.1.
Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 7855–7866, https://doi.org/10.1029/2018JD028724.
Gleixner, S., N. S. Keenlyside, T. D. Demissie, F. Counillon, Y. Wang, and E. Viste, 2017: Seasonal predictability of Kiremt rainfall in coupled general circulation models. Environ. Res. Lett., 12, 114 016, https://doi.org/10.1088/1748-9326/aa8cfa.
Graham, R. J., and Coauthors, 2011: Long-range forecasting and the global framework for climate services. Climate Res ., 47, 47–55, https://doi.org/10.3354/cr00963.
Hackert, E., R. M. Kovach, A. J. Busalacchi, and J. Ballabrera-Poy, 2019: Impact of Aquarius and SMAP satellite sea surface salinity observations on coupled El Niño/Southern Oscillation forecasts. J. Geophys. Res. Oceans, 124, 4546–4556, https://doi.org/10.1029/2019JC015130.
Hansen, F., R. J. Greatbatch, G. Gollan, T. Jung, and A. Weisheimer, 2017: Remote control of North Atlantic Oscillation predictability via the stratosphere. Quart. J. Roy. Meteor. Soc., 143, 706–719, https://doi.org/10.1002/qj.2958.
Hao, Z., V. P. Singh, and Y. Xia, 2018: Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys., 56, 108–141, https://doi.org/10.1002/2016RG000549.
Hazeleger, W., B. J. J. M. van den Hurk, E. Min, G. J. van Oldenborgh, A. C. Petersen, D. A. Stainforth, E. Vasileiadou, and L. A. Smith, 2015: Tales of future weather. Nat. Climate Change, 5, 107–113, https://doi.org/10.1038/nclimate2450.
Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 4567–4587, https://doi.org/10.1175/JCLI-D-16-0789.1.
Hudson, D., O. Alves, H. H. Hendon, and A. G. Marshall, 2011: Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Quart. J. Roy. Meteor. Soc., 137, 673–689, https://doi.org/10.1175/MWR-D-13-00059.1.
Ilyina, T., and P. Friedlingstein, 2016: Biogeochemical cycles and climate change. WCRP Grand Challenge White Paper, 10 pp., www.wcrp-climate.org/JSC37/Documents/BGCGC_whitepaper_submission.pdf.
Infanti, J. M., and B. P. Kirtman, 2019: A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Climate Dyn ., 52, 6877–6892, https://doi.org/10.1007/s00382-018-4553-0.
Jain, S., A. A. Scaife, and A. K. Mitra, 2019: Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems. Climate Dyn ., 52, 5291–5301, https://doi.org/10.1007/s00382-018-4449-z.
Jeong, J.-H., H. W. Linderholm, S.-H. Woo, C. Folland, B.-M. Kim, S.-J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956–1972, https://doi.org/10.1175/JCLI-D-12-00159.1.
Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 2044–2062, https://doi.org/10.1175/JCLI-D-14-00112.1.
Kadow, C., S. Illing, I. Kröner, U. Ulbrich, and U. Cubasch, 2017: Decadal climate predictions improved by ocean ensemble dispersion filtering. J. Adv. Model. Earth Syst., 9, 1138–1149, https://doi.org/10.1002/2016MS000787.
Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.
Kapnick, S. B., and Coauthors, 2018: Potential for western US seasonal snowpack prediction. Proc. Natl. Acad. Sci. USA, 115, 1180–1185, https://doi.org/10.1073/pnas.1716760115.
Karpechko, A. Y., 2018: Predictability of sudden stratospheric warmings in the ECMWF extended-range forecast system. Mon. Wea. Rev., 146, 1063–1075, https://doi.org/10.1175/MWR-D-17-0317.1.
Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032.
Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.
Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424.
Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 7772–7784, https://doi.org/10.1002/2017JD027005.
Kim, H.-M., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 9425–9443, https://doi.org/10.1175/JCLI-D-18-0210.1.
Kim, W. M., S. G. Yeager, and G. Danabasoglu, 2018: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century. Geophys. Res. Lett., 45, 13 449–13 457, https://doi.org/10.1029/2018GL080474.
Kim, Y.-H., and H.-Y. Chun, 2015: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Phys. Chem., 15, 6577–6587, https://doi.org/10.5194/acp-15-6577-2015.
Kirtman, B., D. Anderson, G. Brunet, I. S. Kang, A. A. Scaife, and D. M. Smith, 2013: Prediction from weeks to decades. Climate Science for Serving Society, G. R. Asrar and J. W. Hurrell, Eds., Springer, 205–235.
Kirtman, B., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-D-12-00050.1.
Klemm, T., and R. A. McPherson, 2017: The development of seasonal climate forecasting for agricultural producers. Agric. For. Meteor., 232, 384–399, https://doi.org/10.1016/j.agrformet.2016.09.005.
Kolstad, E. W., and Coauthors, 2019: Trials, errors and improvements in coproduction of climate services. Bull. Amer. Meteor. Soc., 100, 1419–1428, https://doi.org/10.1175/BAMS-D-18-0201.1.
Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.
Koster, R. D., Z. Guo, P. A. Dirmeyer, R. Yang, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1.
Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805–822, https://doi.org/10.1175/2011JHM1365.1.
Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 7345–7364, https://doi.org/10.1175/JCLI-D-16-0192.1.
Kröger, J., and Coauthors, 2018: Full-field initialized decadal predictions with the MPI Earth system model: An initial shock in the North Atlantic. Climate Dyn ., 51, 2593–2608, https://doi.org/10.1007/s00382-017-4030-1.
Kushnir, Y., and Coauthors, 2019: Towards operational predictions of the near-term climate. Nat. Climate Change, 9, 94–101, https://doi.org/10.1038/s41558-018-0359-7.
Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Sub-seasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967–988, https://doi.org/10.1175/WAF-D-17-0165.1.
Lee, R., S. Woolnough, A. Charlton-Perez, and F. Vitart, 2019: ENSO modulation of MJO teleconnection to the North Atlantic and Europe. Geophys. Res. Lett., 46, 13 535–13 545, https://doi.org/10.1029/2019GL084683.
Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. Pappenberger, 2017: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett., 44, 12 208–12 217, https://doi.org/10.1002/2017GL076043.
Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.1002/qj.3094.
Li, B., M. Rodell, B. F. Zaitchik, R. H. Reichle, R. D. Koster, and T. M. van Dam, 2012: Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol., 446–447, 103–115, https://doi.org/10.1016/j.jhydrol.2012.04.035.
Li, F., Y. J. Orsolini, N. Keenlyside, M.-L. Shen, F. Counillon, and Y. Wang, 2019: Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model. J. Geophys. Res. Atmos., 124, 10 033–10 048, https://doi.org/10.1029/2019JD030903.
Li, H., and T. Ilyina, 2018: Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophys. Res. Lett., 45, 916–925, https://doi.org/10.1002/2017GL075370.
Li, H., T. Ilyina, A. Wolfgang, A. Müller, and F. Sienz, 2016: Decadal predictions of the North Atlantic CO2 uptake. Nat. Commun., 7, 11 076, https://doi.org/10.1038/ncomms11076.
Li, H., T. Ilyina, W. A. Müller, and P. Landschützer, 2019: Predicting the variable ocean carbon sink. Sci. Adv., 5, eaav6471, https://doi.org/10.1126/sciadv.aav6471.
Li, S., and A. W. Robertson, 2015: Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Wea. Rev., 143, 2871–2889, https://doi.org/10.1175/MWR-D-14-00277.1.
Li, X., G. Gollan, R. J. Greatbatch, and R. Lu, 2018: Intraseasonal variation of the East Asian summer monsoon associated with the Madden–Julian oscillation. Atmos. Sci. Lett., 19, e794, https://doi.org/10.1002/asl.794.
Lim, E.-P., and H. H. Hendon, 2017: Causes and predictability of the negative Indian Ocean dipole and its impact on La Niña during 2016. Sci. Rep., 7, 12619, https://doi.org/10.1038/s41598-017-12674-z.
Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1.
Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn ., 53, 1681–1695, https://doi.org/10.1007/s00382-019-04719-y.
Lin, H., J. Frederiksen, D. Straus, and C. Stan, 2019: Tropical-extratropical interactions and teleconnections. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 143–164.
Liu, X., X. Wang, and A. Kumar, 2018: Multiweek prediction skill assessment of Arctic sea ice variability in the CFSv2. Wea. Forecasting, 33, 1453–1476, https://doi.org/10.1175/WAF-D-18-0046.1.
Lledó, L., V. Torralba, A. Soret, J. Ramon, and F. J. Doblas-Reyes, 2019: Seasonal forecasts of wind power generation. Renewable Energy, 143, 91–100, https://doi.org/10.1016/j.renene.2019.04.135.
Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 593–14 629, https://doi.org/10.5194/acp-17-14593-2017.
Lovenduski, N., S. G. Yeager, K. Lindsay, and M. C. Long, 2019a: Predicting near-term variability in ocean carbon uptake. Earth Syst. Dyn., 10, 45–57, https://doi.org/10.5194/esd-10-45-2019.
Lovenduski, N., G. B. Bonan, S. G. Yeager, K. Lindsay, and D. L. Lombardozzi, 2019b: High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environ. Res. Lett., 14, 124 074, https://doi.org/10.1088/1748-9326/ab5c55.
Lowe, R., M. García-Díez, J. Ballester, J. Creswick, J.-M. Robine, F. R. Herrmann, and X. Rodó, 2016: Evaluation of an early-warning system for heat wave-related mortality in Europe: Implications for sub-seasonal to seasonal forecasting and climate services. Int. J. Environ. Res. Public Health, 13, 206, https://doi.org/10.3390/ijerph13020206.
Lu, B., A. A. Scaife, N. Dunstone, D. Smith, H.-L. Ren, Y. Liu, and R. Eade, 2017: Skillful seasonal predictions of winter precipitation over southern China. Environ. Res. Lett., 12, 074021, https://doi.org/10.1088/1748-9326/aa739a.
Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84–93, https://doi.org/10.1175/2007JCLI1412.1.
Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.
Maloney, E. D., and Coauthors, 2019: Process-oriented evaluation of climate and weather forecasting models. Bull. Amer. Meteor. Soc., 100, 1665–1686, https://doi.org/10.1175/BAMS-D-18-0042.1.
Manzanas, R., J. M. Gutiérrez, J. Fernández, E. van Meijgaard, S. Calmanti, M. E. Magariño, A. S. Cofiño, and S. Herrera, 2018: Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Serv ., 9, 44–56, https://doi.org/10.1016/j.cliser.2017.06.004.
Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.
Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608–E625, https://doi.org/10.1175/BAMS-D-18-0326.1.
Marotzke, J., and Coauthors, 2016: MiKlip—A national research project on decadal climate prediction. Bull. Amer. Meteor. Soc., 97, 2379–2394, https://doi.org/10.1175/BAMS-D-15-00184.1.
Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn ., 49, 1365–1377, https://doi.org/10.1007/s00382-016-3392-0.
Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 943–10 951, https://doi.org/10.1002/2015GL066754.
McKinnon, K., A. Rhines, M. Tingly, and P. Huybers, 2016: Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci., 9, 389–394, https://doi.org/10.1038/ngeo2687.
Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.
Ménégoz, M., R. Bilbao, O. Bellprat, V. Guemas, and F. J. Doblas-Reyes, 2018: Forecasting the climate response to volcanic eruptions: Prediction skill related to stratospheric aerosol forcing. Environ. Res. Lett., 13, 064022, https://doi.org/10.1088/1748-9326/aac4db.
Misios, S., L. J. Gray, M. F. Knudsen, C. Karoff, H. Schmidt, and J. D. Haigh, 2019: Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. USA, 116, 7186–7191, https://doi.org/10.1073/pnas.1815060116.
Monerie, P.-A., J. Robson, B. Dong, and N. Dunstone, 2018: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Climate Dyn ., 51, 473–491, https://doi.org/10.1007/s00382-017-3935-z.
Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the southern Great Plains. J. Geophys. Res. Atmos., 123, 2655–2683, https://doi.org/10.1002/2017JD027199.
Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 1383–1413, https://doi.org/10.1029/2017MS001217.
Mulholland, D. P., P. Laloyaux, K. Haines, and M. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 4631–4644, https://doi.org/10.1175/MWR-D-15-0076.1.
Muñoz-Sabater, J., H. Lawrence, C. Albergel, P. de Rosnay, L. Isaksen, S. Mecklenburg, Y. Kerr, and M. Drusch, 2019: Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 145, 2524–2548, https://doi.org/10.1002/QJ.3577.
Neddermann, N. C., W. A. Müller, M. Dobrynin, A. Düsterhus, and J. Baehr, 2019: Seasonal predictability of European summer climate re-assessed. Climate Dyn ., 53, 3039–3056, https://doi.org/10.1007/s00382-019-04678-4.
Nie, Y., A. A. Scaife, H.-L. Ren, R. E. Comer, M. B. Andrews, P. Davis, and N. Martin, 2019: Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations. Environ. Res. Lett., 14, 034006, https://doi.org/10.1088/1748-9326/ab0385.
Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 1105–1125, https://doi.org/10.1175/JAS-D-16-0205.1.
Nnamchi, H. C., J. Li, F. Kucharski, I.-S. Kang, N. S. Keenlyside, P. Chang, and R. Farneti, 2015: Thermodynamic controls of the Atlantic Niño. Nat. Commun., 6, 8895, https://doi.org/10.1038/ncomms9895.
Nowack, P., P. Braesicke, J. Haigh, N. L. Abraham, J. Pyle, and A. Voulgarakis, 2018: Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. Environ. Res. Lett., 13, 104 016, https://doi.org/10.1088/1748-9326/aae2be.
O’Reilly, C. H., 2018: Interdecadal variability of the ENSO teleconnection to the wintertime North Pacific. Climate Dyn., 51, 3333–3350, https://doi.org/10.1007/s00382-018-4081-y.
O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 6481–6504, https://doi.org/10.1175/JCLI-D-17-0451.1.
O’Reilly, C. H., A. Weisheimer, T. Woollings, L. Gray, and D. MacLeod, 2019: The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal-to-noise paradox. Quart. J. Roy. Meteor. Soc., 145, 131–146, https://doi.org/10.1002/qj.3413.
Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn ., 41, 1969–1982, https://doi.org/10.1007/s00382-013-1782-0.
Pasternack, A., J. Bhend, M. A. Liniger, H. W. Rust, W. A. Müller, and U. Ulbrich, 2018: Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018.
Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 5395–5416, https://doi.org/10.1175/JCLI-D-17-0678.1.
Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 2043–2060, https://doi.org/10.1175/BAMS-D-18-0270.1.
Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169–ES172, https://doi.org/10.1175/BAMS-D-17-0036.1.
Penny, S. G., and Coauthors, 2017: Coupled data assimilation for integrated Earth system analysis and prediction: Goals, challenges and recommendations. WMO Tech. Rep. WWRP 2017-3, 59 pp.
Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst., 11, 1803–1829, https://doi.org/10.1029/2019MS001652.
Polkova, I., and Coauthors, 2019: Initialization and ensemble generation for decadal climate predictions: A comparison of different methods. J. Adv. Model. Earth Syst., 11, 149–172, https://doi.org/10.1029/2018MS001439.
Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016a: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn ., 47, 919–935, https://doi.org/10.1007/s00382-015-2879-4.
Prodhomme, C., L. Batté, F. Massonnet, P. Davini, O. Bellprat, V. Guemas, and F. Doblas-Reyes, 2016b: Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. J. Climate, 29, 9141–9162, https://doi.org/10.1175/JCLI-D-16-0117.1.
Robertson, A. W., S. J. Camargo, A. Sobel, F. Vitart, and S. Wang, 2018: Summary of workshop on sub-seasonal to seasonal predictability of extreme weather and climate. npj Climate Atmos. Sci., 1, 20178, https://doi.org/10.1038/s41612-017-0009-1.
Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513–517, https://doi.org/10.1038/ngeo2727.
Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 2785–2810, https://doi.org/10.1175/JCLI-D-16-0127.1.
Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 3679–3700, https://doi.org/10.1175/JCLI-D-17-0270.1.
Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2016: Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dyn ., 46, 1819–1840, https://doi.org/10.1007/s00382-015-2678-y.
Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 1253–1272, https://doi.org/10.1175/BAMS-D-17-0001.1.
Saravanan, R., and P. Chang, 2019: Midlatitude mesoscale ocean-atmosphere interaction and its relevance to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 183–200.
Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4.
Scaife, A. A., and Coauthors, 2014a: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752–1758, https://doi.org/10.1002/2013GL059160.
Scaife, A. A., and Coauthors, 2014b: Skillful long-range predictions of European and North American winters. Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637.
Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 1–11, https://doi.org/10.1002/qj.2910.
Scaife, A. A., and Coauthors, 2019: Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett., 20, e922, https://doi.org/10.1002/asl.922.
Schuster, M., and Coauthors, 2019: Improvement in the decadal prediction skill of the Northern Hemisphere extra-tropical winter circulation through increased model resolution. Earth Syst. Dyn., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019.
Sheen, K. L., D. M. Smith, N. J. Dunstone, R. Eade, D. P. Rowell, and M. Vellinga, 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nat. Commun., 8, 14 966, https://doi.org/10.1038/ncomms14966.
Shen, M.-L., N. Keenlyside, F. Selten, W. Wiegerinck, and G. S. Duane, 2016: Dynamically combining climate models to “supermodel” the tropical Pacific. Geophys. Res. Lett., 43, 359–366, https://doi.org/10.1002/2015GL066562.
Shonk, J. K. P., E. Guilyardi, T. Toniazzo, S. J. Woolnough, and T. Stockdale, 2018: Identifying causes of western Pacific ITCZ drift in ECMWF System 4 hindcasts. Climate Dyn ., 50, 939–954, https://doi.org/10.1007/s00382-017-3650-9.
Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698.
Simpson, I. R., P. Hitchcock, R. Seager, Y. Wu, and P. Callaghan, 2018: The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Climate, 31, 6371–6391, https://doi.org/10.1175/JCLI-D-18-0041.1.
Smith, D. M., and Coauthors, 2016: Role of the volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936–940, https://doi.org/10.1038/nclimate3058.
Smith, D. M., and Coauthors, 2019: Robust skill of decadal climate predictions. npj Climate Atmos. Sci., 2, 13, https://doi.org/10.1038/s41612-019-0071-y.
Sospedra-Alfonso, R., L. Mudryk, W. J. Merryfield, and C. Derksen, 2016a: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part I. Initialization. J. Hydrometeor., 17, 1467–1488, https://doi.org/10.1175/JHM-D-14-0223.1.
Sospedra-Alfonso, R., W. J. Merryfield, and V. V. Kharin, 2016b: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part II. Potential predictability and hindcast skill. J. Hydrometeor., 17, 2511–2535, https://doi.org/10.1175/JHM-D-16-0027.1.
Stan, C., and D. M. Straus, 2019: The impact of cloud representation on the sub-seasonal forecasts of atmospheric teleconnections and preferred circulation regimes in the Northern Hemisphere. Atmos.–Ocean, 57, 233–248, https://doi.org/10.1080/07055900.2019.1590178.
Stephenson, S. R., and R. Pincus, 2018: Challenges of sea-ice prediction for Arctic marine policy and planning. J. Borderl. Stud., 33, 255–272, https://doi.org/10.1080/08865655.2017.1294494.
Stone, K. A., S. Solomon, D. E. Kinnison, C. F. Baggett, and E. A. Barnes, 2019: Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geophys. Res. Atmos., 124, 5922–5933, https://doi.org/10.1029/2018JD029626.
Strazzo, S., D. C. Collins, A. Schepen, Q. J. Wang, E. Becker, and L. Jia, 2019: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation. Mon. Wea. Rev., 147, 607–625, https://doi.org/10.1175/MWR-D-18-0156.1.
Strommen, K., and T. N. Palmer, 2019: Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 145, 147–163, https://doi.org/10.1002/qj.3414.
Swingedouw, D., J. Mignot, P. Ortega, M. Khodri, M. Menegoz, C. Cassou, and V. Hanquiez, 2017: Impact of explosive volcanic eruptions on the main climate variability modes. Global Planet. Change, 150, 24–45, https://doi.org/10.1016/j.gloplacha.2017.01.006.
Taguchi, M., 2018: Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. J. Geophys. Res. Atmos., 123, 10 231–10 247, https://doi.org/10.1029/2018JD028755.
Takahashi, C., and M. Watanabe, 2016: Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Climate Change, 6, 768–772, https://doi.org/10.1038/nclimate2996.
Takaya, Y., 2019: Forecast system design, configuration, and complexity. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 93–117.
Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 4525–4545, https://doi.org/10.1175/JCLI-D-18-0823.1.
Tommasi, D., and Coauthors, 2017: Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr., 152, 15–49, https://doi.org/10.1016/j.pocean.2016.12.011.
Tompkins, A. M., and Coauthors, 2017: The climate-system historical forecast project: Providing open access to seasonal forecast ensembles from centers around the globe. Bull. Amer. Meteor. Soc., 98, 2293–2301, https://doi.org/10.1175/BAMS-D-16-0209.1.
Toniazzo, T., and S. Koseki, 2018: A methodology for anomaly coupling in climate simulation. J. Adv. Model. Earth Syst., 10, 2061–2079, https://doi.org/10.1029/2018MS001288.
Toure, A. M., R. H. Reichle, B. A. Forman, A. Getirana, and G. J. M. De Lannoy, 2018: Assimilation of MODIS snow cover fraction observations into the NASA Catchment Land Surface Model. Remote Sens ., 10, 316, https://doi.org/10.3390/rs10020316.
Towler, E., D. PaiMazumder, and J. Done, 2018: Toward the application of decadal climate predictions. J. Appl. Meteor. Climatol., 57, 555–568, https://doi.org/10.1175/JAMC-D-17-0113.1.
Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 987–1003, https://doi.org/10.1002/qj.2432.
Turco, M., R. Marcos-Matamorosa, X. Castro, E. Canyameras, and M. C. Llasat, 2019: Seasonal prediction of climate-driven fire risk for decision-making and operational applications in a Mediterranean region. Sci. Total Environ., 676, 577–583, https://doi.org/10.1016/j.scitotenv.2019.04.296.
Uotila, P., and Coauthors, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dyn ., 52, 1613–1650, https://doi.org/10.1007/s00382-018-4242-z.
Vigaud, N., A. Robertson, and M. Tippett, 2017: Multimodel ensembling of subseasonal precipitation forecasts over North America. Mon. Wea. Rev., 145, 3913–3928, https://doi.org/10.1175/MWR-D-17-0092.1.
Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 2210–2220, https://doi.org/10.1002/qj.3079.
Vitart, F., and M. Balmaseda, 2017: Impact of sea surface temperature biases on extended-range forecasts. ECMWF Tech. Memo. 830, 21 pp., www.ecmwf.int/sites/default/files/elibrary/2018/18659-impact-sea-surface-temperature-biases-extended-range-forecasts.pdf.
Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.
Vitart, F., and A. W. Robertson, 2019: Introduction: Why Sub-seasonal to seasonal prediction (S2S)? Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 3–15.
Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1.
Voldoire, A., and Coauthors, 2019: Role of wind stress in driving SST biases in the tropical Atlantic. Climate Dyn ., 53, 3481–3504, https://doi.org/10.1007/s00382-019-04717-0.
Volpi, D., V. Guemas, and F. J. Doblas-Reyes, 2017: Comparison of full field and anomaly initialisation for decadal climate prediction: Towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Climate Dyn ., 49, 1181–1195, https://doi.org/10.1007/s00382-016-3373-3.
Wang, H. L., S. D. Schubert, R. D. Koster, and Y. Chang, 2019: Phase locking of the boreal summer atmospheric response to dry land surface anomalies in the Northern Hemisphere. J. Climate, 32, 1081–1099, https://doi.org/10.1175/JCLI-D-18-0240.1.
Wang, T., D. Guo, Y. Gao, H. Wang, F. Zheng, Y. Zhu, J. Miao, and Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dyn ., 51, 2433–2453, https://doi.org/10.1007/s00382-017-4021-2.
Wei, J., and P. A. Dirmeyer, 2019: Sensitivity of land precipitation to surface evapotranspiration: A nonlocal perspective based on water vapor transport. Geophys. Res. Lett., 46, 12 588–12 597, https://doi.org/10.1029/2019GL085613.
Weisheimer, A., and T. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 2013 1162, https://doi.org/10.1098/rsif.2013.1162.
Weisheimer, A., D. Decremer, D. MacLeod, C. O’Reilly, T. N. Stockdale, S. Johnson, and T. N. Palmer, 2019: How confident are predictability estimates of the winter North Atlantic Oscillation? Quart. J. Roy. Meteor. Soc., 145