Jump to Content Jump to Main Navigation
Logo Logo Logo Logo Logo Logo
Artificial Intelligence for the Earth Systems Bulletin of the American Meteorological Society Community Science Earth Interactions Journal of Applied Meteorology and Climatology Journal of Atmospheric and Oceanic Technology Journal of Climate Journal of Hydrometeorology Journal of Physical Oceanography Journal of the Atmospheric Sciences Monthly Weather Review Weather and Forecasting Weather, Climate, and Society Meteorological Monographs
BROWSE PUBLISH SUBSCRIBE ABOUT
Sign in Sign up
Advanced Search Help
Logo Logo Logo Logo Logo Logo
Sign in Sign up
Artificial Intelligence for the Earth Systems Bulletin of the American Meteorological Society Community Science Earth Interactions Journal of Applied Meteorology and Climatology Journal of Atmospheric and Oceanic Technology Journal of Climate Journal of Hydrometeorology Journal of Physical Oceanography Journal of the Atmospheric Sciences Monthly Weather Review Weather and Forecasting Weather, Climate, and Society Meteorological Monographs
BROWSE PUBLISH SUBSCRIBE ABOUT
Advanced Search Help

 
Cover Bulletin of the American Meteorological Society
Bulletin of the American Meteorological Society
  • Abstract
  • Mechanisms of predictability
    • Subseasonal to seasonal.
    • Seasonal to decadal.
    • Time-scale interactions.
  • Modeling issues
    • Subseasonal to seasonal.
    • Seasonal to decadal.
  • Initialization issues
    • Atmosphere initialization.
    • Land initialization.
    • Ocean and sea ice initialization.
    • Coupled data assimilation.
  • Ensemble predictions and forecast information
    • Subseasonal to seasonal.
    • Seasonal to decadal.
  • Climate forecasts for decision-making
    • Subseasonal to seasonal.
    • Seasonal to decadal.
  • Crosscutting issues in S2S and S2D prediction
    • Initialization shock and model error.
    • S2S and S2D research interactions.
    • Research and operations.
  • Conclusions and the future of subseasonal to decadal prediction
ProCite
RefWorks
Reference Manager
BibTeX
Zotero
EndNote
  • Alessandri, A., F. Catalano, M. De Felice, B. Van Den Hurk, F. Doblas Reyes, S. Boussetta, G. Balsamo, and P. A. Miller, 2017: Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth. Climate Dyn ., 49, 1215–1237, https://doi.org/10.1007/s00382-016-3372-4.

    • Crossref
    • Alessandri, A., F. Catalano, M. De Felice, B. Van Den Hurk, F. Doblas Reyes, S. Boussetta, G. Balsamo, and P. A. Miller, 2017: Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth. Climate Dyn., 49, 1215–1237, https://doi.org/10.1007/s00382-016-3372-4.10.1007/s00382-016-3372-4)| false
    • Search Google Scholar
    • Export Citation
  • Al-Yaari, A., and Coauthors, 2017: Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens. Environ., 193, 257–273, https://doi.org/10.1016/j.rse.2017.03.010.

    • Crossref
    • Al-Yaari, A., and Coauthors, 2017: Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens. Environ., 193, 257–273, https://doi.org/10.1016/j.rse.2017.03.010.10.1016/j.rse.2017.03.010)| false
    • Search Google Scholar
    • Export Citation
  • Ardilouze, C., and Coauthors, 2017: Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Climate Dyn ., 49, 3959–3974, https://doi.org/10.1007/s00382-017-3555-7.

    • Crossref
    • Ardilouze, C., and Coauthors, 2017: Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Climate Dyn., 49, 3959–3974, https://doi.org/10.1007/s00382-017-3555-7.10.1007/s00382-017-3555-7)| false
    • Search Google Scholar
    • Export Citation
  • Ardilouze, C., L. Batté, M. Déqué, E. van Meijgaard, and B. van den Hurk, 2019: Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments. Climate Dyn., 52, 4011–4026, https://doi.org/10.1007/s00382-018-4358-1.

    • Crossref
    • Ardilouze, C., L. Batté, M. Déqué, E. van Meijgaard, and B. van den Hurk, 2019: Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments. Climate Dyn., 52, 4011–4026, https://doi.org/10.1007/s00382-018-4358-1.10.1007/s00382-018-4358-1)| false
    • Search Google Scholar
    • Export Citation
  • Ayarzagüena, B., and Coauthors, 2018: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos. Chem. Phys., 18, 11 277–11 287, https://doi.org/10.5194/acp-18-11277-2018.

    • Crossref
    • Ayarzagüena, B., and Coauthors, 2018: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos. Chem. Phys., 18, 11 277–11 287, https://doi.org/10.5194/acp-18-11277-2018.10.5194/acp-18-11277-2018)| false
    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 7528–7536, https://doi.org/10.1002/2017GL074434.

    • Crossref
    • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 7528–7536, https://doi.org/10.1002/2017GL074434.10.1002/2017GL074434)| false
    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., K. M. Nardi, S. J. Childs, S. N. Zito, E. A. Barnes, and E. D. Maloney, 2018: Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden-Julian oscillation. J. Geophys. Res. Atmos., 123, 12 661–12 675, https://doi.org/10.1029/2018JD029059.

    • Crossref
    • Baggett, C. F., K. M. Nardi, S. J. Childs, S. N. Zito, E. A. Barnes, and E. D. Maloney, 2018: Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden-Julian oscillation. J. Geophys. Res. Atmos., 123, 12 661–12 675, https://doi.org/10.1029/2018JD029059.10.1029/2018JD029059)| false
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561.

    • Crossref
    • Balmaseda, M. A., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561.10.1029/2008GL035561)| false
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and Coauthors, 2015: The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr., 8, S80–S97, https://doi.org/10.1080/1755876X.2015.1022329.

      Balmaseda, M. A., and Coauthors, 2015: The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr., 8, S80–S97, https://doi.org/10.1080/1755876X.2015.1022329.)| false
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2018: Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sens ., 10, 2038, https://doi.org/10.3390/rs10122038.

    • Crossref
    • Balsamo, G., and Coauthors, 2018: Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sens., 10, 2038, https://doi.org/10.3390/rs10122038.10.3390/rs10122038)| false
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L’Heureux, 2019: Deterministic skill of ENSO predictions from the North American multimodel ensemble. Climate Dyn ., 53, 7215–7234, https://doi.org/10.1007/s00382-017-3603-3.

    • Crossref
    • Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L’Heureux, 2019: Deterministic skill of ENSO predictions from the North American multimodel ensemble. Climate Dyn., 53, 7215–7234, https://doi.org/10.1007/s00382-017-3603-3.10.1007/s00382-017-3603-3)| false
    • Search Google Scholar
    • Export Citation
  • Batté, L., C. Ardilouze, and M. Déqué, 2018: Forecasting West African heat waves at sub-seasonal and seasonal time scales. Mon. Wea. Rev., 146, 889–907, https://doi.org/10.1175/MWR-D-17-0211.1.

    • Crossref
    • Batté, L., C. Ardilouze, and M. Déqué, 2018: Forecasting West African heat waves at sub-seasonal and seasonal time scales. Mon. Wea. Rev., 146, 889–907, https://doi.org/10.1175/MWR-D-17-0211.1.10.1175/MWR-D-17-0211.1)| false
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.

    • Crossref
    • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47–55, https://doi.org/10.1038/nature14956.10.1038/nature14956)| false
    • Search Google Scholar
    • Export Citation
  • Becker, E. J., 2017: Prediction of short-term climate extremes with a multimodel ensemble. Climate Extremes: Patterns and Mechanisms, S.-Y. Wang et al, Eds., John Wiley and Sons, 347–359.

    • Crossref
    • Becker, E. J., 2017: Prediction of short-term climate extremes with a multimodel ensemble. Climate Extremes: Patterns and Mechanisms, S.-Y. Wang et al, Eds., John Wiley and Sons, 347–359.10.1002/9781119068020.ch21)| false
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473.

    • Crossref
    • Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473.10.1002/2014RG000473)| false
    • Search Google Scholar
    • Export Citation
  • Bergman, D. L., L. Magnusson, J. Nilsson, and F. Vitart, 2019: Seasonal forecasting of tropical cyclone landfall using ECMWF’s system 4. Wea. Forecasting, 34, 1239–1255, https://doi.org/10.1175/WAF-D-18-0032.1.

    • Crossref
    • Bergman, D. L., L. Magnusson, J. Nilsson, and F. Vitart, 2019: Seasonal forecasting of tropical cyclone landfall using ECMWF’s system 4. Wea. Forecasting, 34, 1239–1255, https://doi.org/10.1175/WAF-D-18-0032.1.10.1175/WAF-D-18-0032.1)| false
    • Search Google Scholar
    • Export Citation
  • Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson, and A. Weisheimer, 2019: The Northern Hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Climate Dyn ., 52, 3759–3771, https://doi.org/10.1007/s00382-018-4371-4.

    • Crossref
    • Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson, and A. Weisheimer, 2019: The Northern Hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Climate Dyn., 52, 3759–3771, https://doi.org/10.1007/s00382-018-4371-4.10.1007/s00382-018-4371-4)| false
    • Search Google Scholar
    • Export Citation
  • Bilodeau, B., M. Carrera, A. Russell, X. Wang, and S. Belair, 2016: Impacts of SMAP data in Environment Canada’s Regional Deterministic Prediction System. 2016Int. Geoscience and Remote Sensing Symp ., Beijing, China, Institute of Electrical and Electronics Engineers, 5233–5236, https://doi.org/10.1109/IGARSS.2016.7730363.

      Bilodeau, B., M. Carrera, A. Russell, X. Wang, and S. Belair, 2016: Impacts of SMAP data in Environment Canada’s Regional Deterministic Prediction System. 2016 Int. Geoscience and Remote Sensing Symp., Beijing, China, Institute of Electrical and Electronics Engineers, 5233–5236, https://doi.org/10.1109/IGARSS.2016.7730363.)| false
    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and K. A. Peterson, 2018: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018.

    • Crossref
    • Blockley, E. W., and K. A. Peterson, 2018: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018.10.5194/tc-12-3419-2018)| false
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Crossref
    • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016.10.5194/gmd-9-3751-2016)| false
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232, https://doi.org/10.1038/nature10946.10.1038/nature10946)| false
    • Search Google Scholar
    • Export Citation
  • Borchert, L., W. A. Müller, and J. Baehr, 2018: Atlantic ocean heat transport influences interannual-to-decadal surface temperature predictability in the North Atlantic region. J. Climate, 31, 6763–6782, https://doi.org/10.1175/JCLI-D-17-0734.1.

    • Crossref
    • Borchert, L., W. A. Müller, and J. Baehr, 2018: Atlantic ocean heat transport influences interannual-to-decadal surface temperature predictability in the North Atlantic region. J. Climate, 31, 6763–6782, https://doi.org/10.1175/JCLI-D-17-0734.1.10.1175/JCLI-D-17-0734.1)| false
    • Search Google Scholar
    • Export Citation
  • Browne, P. A., P. de Rosnay, H. Zuo, A. Bennett, and A. N. D. A. Dawson, 2019: Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system. Remote Sens ., 11, 234, https://doi.org/10.3390/rs11030234.

    • Crossref
    • Browne, P. A., P. de Rosnay, H. Zuo, A. Bennett, and A. N. D. A. Dawson, 2019: Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system. Remote Sens., 11, 234, https://doi.org/10.3390/rs11030234.10.3390/rs11030234)| false
    • Search Google Scholar
    • Export Citation
  • Brune, S., A. Düsterhus, H. Pohlmann, W. A. Müller, and J. Baehr, 2018: Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dyn ., 51, 1947–1970, https://doi.org/10.1007/s00382-017-3991-4.

    • Crossref
    • Brune, S., A. Düsterhus, H. Pohlmann, W. A. Müller, and J. Baehr, 2018: Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dyn., 51, 1947–1970, https://doi.org/10.1007/s00382-017-3991-4.10.1007/s00382-017-3991-4)| false
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., T. DelSole, M. S. Lozier, and L. Li, 2019: Predictability of North Atlantic sea surface temperature and upper-ocean heat content. J. Climate, 32, 3005–3023, https://doi.org/10.1175/JCLI-D-18-0509.1.

    • Crossref
    • Buckley, M. W., T. DelSole, M. S. Lozier, and L. Li, 2019: Predictability of North Atlantic sea surface temperature and upper-ocean heat content. J. Climate, 32, 3005–3023, https://doi.org/10.1175/JCLI-D-18-0509.1.10.1175/JCLI-D-18-0509.1)| false
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018.

    • Crossref
    • Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018.10.5194/gmd-11-1009-2018)| false
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and Coauthors, 2016: The Climate-system Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413–1427, https://doi.org/10.1002/qj.2743.

    • Crossref
    • Butler, A. H., and Coauthors, 2016: The Climate-system Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413–1427, https://doi.org/10.1002/qj.2743.10.1002/qj.2743)| false
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and Coauthors, 2019: Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 223–241.

      Butler, A. H., and Coauthors, 2019: Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 223–241.)| false
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

    • Crossref
    • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.10.1126/science.aav4236)| false
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1.10.1175/BAMS-D-13-00117.1)| false
    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., L. Hermonson, A. Dobbin, J. Imbers, L. Lledó, and G. A. Vecchi, 2018: How skillful are the multiannual forecasts of Atlantic hurricane activity? Bull. Amer. Meteor. Soc., 99, 403–413, https://doi.org/10.1175/BAMS-D-17-0025.1.

    • Crossref
    • Caron, L.-P., L. Hermonson, A. Dobbin, J. Imbers, L. Lledó, and G. A. Vecchi, 2018: How skillful are the multiannual forecasts of Atlantic hurricane activity? Bull. Amer. Meteor. Soc., 99, 403–413, https://doi.org/10.1175/BAMS-D-17-0025.1.10.1175/BAMS-D-17-0025.1)| false
    • Search Google Scholar
    • Export Citation
  • Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I. Kang, and N. Caltabiano, 2018: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99, 479–490, https://doi.org/10.1175/BAMS-D-16-0286.1.

    • Crossref
    • Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I. Kang, and N. Caltabiano, 2018: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99, 479–490, https://doi.org/10.1175/BAMS-D-16-0286.1.10.1175/BAMS-D-16-0286.1)| false
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 1919–1934, https://doi.org/10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden–Julian oscillation in two types of El Niño. J. Climate, 29, 1919–1934, https://doi.org/10.1175/JCLI-D-15-0486.1.10.1175/JCLI-D-15-0486.1)| false
    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Liu, M. Song, Q. Yang, and S. Xu, 2017: Impacts of assimilating satellite sea ice concentration and thickness on Arctic sea ice prediction in the NCEP Climate Forecast System. J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1.

    • Crossref
    • Chen, Z., J. Liu, M. Song, Q. Yang, and S. Xu, 2017: Impacts of assimilating satellite sea ice concentration and thickness on Arctic sea ice prediction in the NCEP Climate Forecast System. J. Climate, 30, 8429–8446, https://doi.org/10.1175/JCLI-D-17-0093.1.10.1175/JCLI-D-17-0093.1)| false
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and Coauthors, 2017: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dyn., 49, 1107–1136, https://doi.org/10.1007/s00382-016-2985-y.

    • Crossref
    • Chevallier, M., and Coauthors, 2017: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dyn., 49, 1107–1136, https://doi.org/10.1007/s00382-016-2985-y.10.1007/s00382-016-2985-y)| false
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., F. Massonnet, H. Goessling, V. Guémas, and T. Jung, 2019: The role of sea ice in sub-seasonal predictability. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 201–221.

    • Crossref
    • Chevallier, M., F. Massonnet, H. Goessling, V. Guémas, and T. Jung, 2019: The role of sea ice in sub-seasonal predictability. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 201–221.10.1016/B978-0-12-811714-9.00010-3)| false
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., A. Timmermann, M. J. Widlansky, M. A. Balmaseda, and L. Stott, 2017: Multi-year predictability of climate, drought, and wildfire in southwestern North America. Sci. Rep., 7, 6568, https://doi.org/10.1038/s41598-017-06869-7.

    • Crossref
    • Chikamoto, Y., A. Timmermann, M. J. Widlansky, M. A. Balmaseda, and L. Stott, 2017: Multi-year predictability of climate, drought, and wildfire in southwestern North America. Sci. Rep., 7, 6568, https://doi.org/10.1038/s41598-017-06869-7.10.1038/s41598-017-06869-7)| false
    • Search Google Scholar
    • Export Citation
  • Christensen, H. M., and J. Berner, 2019: From reliable weather forecasts to skilful climate response: A dynamical systems approach. Quart. J. Roy. Meteor. Soc., 145, 1052–1069, https://doi.org/10.1002/qj.3476.

    • Crossref
    • Christensen, H. M., and J. Berner, 2019: From reliable weather forecasts to skilful climate response: A dynamical systems approach. Quart. J. Roy. Meteor. Soc., 145, 1052–1069, https://doi.org/10.1002/qj.3476.10.1002/qj.3476)| false
    • Search Google Scholar
    • Export Citation
  • Clark, R. T., P. E. Bett, H. E. Thornton, and A. A Scaife, 2017: Skilful seasonal predictions for the European energy industry. Environ. Res. Lett., 12, 024002, https://doi.org/10.1088/1748-9326/aa57ab.

    • Crossref
    • Clark, R. T., P. E. Bett, H. E. Thornton, and A. A Scaife, 2017: Skilful seasonal predictions for the European energy industry. Environ. Res. Lett., 12, 024002, https://doi.org/10.1088/1748-9326/aa57ab.10.1088/1748-9326/aa57ab)| false
    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., M. A. F. Firpo, and F. M. de Andrade, 2018: A verification framework for South American sub-seasonal precipitation predictions. Meteor. Z., 27, 503–520, https://doi.org/10.1127/metz/2018/0898.

    • Crossref
    • Coelho, C. A. S., M. A. F. Firpo, and F. M. de Andrade, 2018: A verification framework for South American sub-seasonal precipitation predictions. Meteor. Z., 27, 503–520, https://doi.org/10.1127/metz/2018/0898.10.1127/metz/2018/0898)| false
    • Search Google Scholar
    • Export Citation
  • de Andrade, F. M., C. A. S. Coelho, and I. F. A. Cavalcanti, 2019: Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) Prediction Project models. Climate Dyn ., 52, 5451–5475, https://doi.org/10.1007/s00382-018-4457-z.

    • Crossref
    • de Andrade, F. M., C. A. S. Coelho, and I. F. A. Cavalcanti, 2019: Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) Prediction Project models. Climate Dyn., 52, 5451–5475, https://doi.org/10.1007/s00382-018-4457-z.10.1007/s00382-018-4457-z)| false
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M., D. Waliser, B. Guan, F. Ralph, and F. Vitart, 2019: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn ., 52, 3039–3060, https://doi.org/10.1007/s00382-018-4309-x.

    • Crossref
    • DeFlorio, M., D. Waliser, B. Guan, F. Ralph, and F. Vitart, 2019: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., 52, 3039–3060, https://doi.org/10.1007/s00382-018-4309-x.10.1007/s00382-018-4309-x)| false
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615–626, https://doi.org/10.1175/MWR-D-15-0218.1.

    • Crossref
    • DelSole, T., and M. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615–626, https://doi.org/10.1175/MWR-D-15-0218.1.10.1175/MWR-D-15-0218.1)| false
    • Search Google Scholar
    • Export Citation
  • DelSole, T., L. Trenary, M. K. Tippett, and K. Pegion, 2017: Predictability of week-3–4 average temperature and precipitation over the contiguous United States. J. Climate, 30, 3499–3512, https://doi.org/10.1175/JCLI-D-16-0567.1.

    • Crossref
    • DelSole, T., L. Trenary, M. K. Tippett, and K. Pegion, 2017: Predictability of week-3–4 average temperature and precipitation over the contiguous United States. J. Climate, 30, 3499–3512, https://doi.org/10.1175/JCLI-D-16-0567.1.10.1175/JCLI-D-16-0567.1)| false
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 1099–1154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 1099–1154, https://doi.org/10.1002/2014RG000478.10.1002/2014RG000478)| false
    • Search Google Scholar
    • Export Citation
  • Dias, D. F., A. Subramanian, L. Zanna, and A. J. Miller, 2019: Remote and local influences in forecasting Pacific SST: A linear inverse model and a multimodel ensemble study. Climate Dyn ., 52, 3183–3201, https://doi.org/10.1007/s00382-018-4323-z.

    • Crossref
    • Dias, D. F., A. Subramanian, L. Zanna, and A. J. Miller, 2019: Remote and local influences in forecasting Pacific SST: A linear inverse model and a multimodel ensemble study. Climate Dyn., 52, 3183–3201, https://doi.org/10.1007/s00382-018-4323-z.10.1007/s00382-018-4323-z)| false
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and Coauthors, 2017a: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44, 11 624–11 635, https://doi.org/10.1002/2017GL074904.

    • Crossref
    • DiNezio, P. N., and Coauthors, 2017a: A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys. Res. Lett., 44, 11 624–11 635, https://doi.org/10.1002/2017GL074904.10.1002/2017GL074904)| false
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017b: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn ., 49, 4237–4261, https://doi.org/10.1007/s00382-017-3575-3.

    • Crossref
    • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017b: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 4237–4261, https://doi.org/10.1007/s00382-017-3575-3.10.1007/s00382-017-3575-3)| false
    • Search Google Scholar
    • Export Citation
  • Dirkson, A., W. J. Merryfield, and A. Monahan, 2017: Impacts of sea ice thickness initialization on seasonal Arctic sea ice predictions. J. Climate, 30, 1001–1017, https://doi.org/10.1175/JCLI-D-16-0437.1.

    • Crossref
    • Dirkson, A., W. J. Merryfield, and A. Monahan, 2017: Impacts of sea ice thickness initialization on seasonal Arctic sea ice predictions. J. Climate, 30, 1001–1017, https://doi.org/10.1175/JCLI-D-16-0437.1.10.1175/JCLI-D-16-0437.1)| false
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and S. Halder, 2016: Sensitivity of numerical weather forecasts to initial soil moisture variations in CFSv2. Wea. Forecasting, 31, 1973–1983, https://doi.org/10.1175/WAF-D-16-0049.1.

    • Crossref
    • Dirmeyer, P. A., and S. Halder, 2016: Sensitivity of numerical weather forecasts to initial soil moisture variations in CFSv2. Wea. Forecasting, 31, 1973–1983, https://doi.org/10.1175/WAF-D-16-0049.1.10.1175/WAF-D-16-0049.1)| false
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and S. Halder, 2017: Application of the land–atmosphere coupling paradigm to the operational Coupled Forecast System (CFSv2). J. Hydrometeor., 18, 85–108, https://doi.org/10.1175/JHM-D-16-0064.1.

    • Crossref
    • Dirmeyer, P. A., and S. Halder, 2017: Application of the land–atmosphere coupling paradigm to the operational Coupled Forecast System (CFSv2). J. Hydrometeor., 18, 85–108, https://doi.org/10.1175/JHM-D-16-0064.1.10.1175/JHM-D-16-0064.1)| false
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018a: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 111–13 127, https://doi.org/10.1029/2018JD029103.

    • Crossref
    • Dirmeyer, P. A., S. Halder, and R. Bombardi, 2018a: On the harvest of predictability from land states in a global forecast model. J. Geophys. Res. Atmos., 123, 13 111–13 127, https://doi.org/10.1029/2018JD029103.10.1029/2018JD029103)| false
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2018b: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375–392, https://doi.org/10.1175/JHM-D-17-0152.1.

    • Crossref
    • Dirmeyer, P. A., and Coauthors, 2018b: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375–392, https://doi.org/10.1175/JHM-D-17-0152.1.10.1175/JHM-D-17-0152.1)| false
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., P. Gentine, M. B. Ek, and G. Balsamo, 2019: Land surface processes relevant to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 166–182.

    • Crossref
    • Dirmeyer, P. A., P. Gentine, M. B. Ek, and G. Balsamo, 2019: Land surface processes relevant to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 166–182.10.1016/B978-0-12-811714-9.00008-5)| false
    • Search Google Scholar
    • Export Citation
  • Dobrynin, M., and Coauthors, 2018: Improved teleconnection-based dynamical seasonal predictions of boreal winter. Geophys. Res. Lett., 45, 3605–3614, https://doi.org/10.1002/2018GL077209.

    • Crossref
    • Dobrynin, M., and Coauthors, 2018: Improved teleconnection-based dynamical seasonal predictions of boreal winter. Geophys. Res. Lett., 45, 3605–3614, https://doi.org/10.1002/2018GL077209.10.1002/2018GL077209)| false
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño southern oscillation to the stratosphere. Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596.

    • Crossref
    • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño southern oscillation to the stratosphere. Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596.10.1029/2018RG000596)| false
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020a: The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920.

      Domeisen, D. I. V., and Coauthors, 2020a: The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920.)| false
    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020b: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019jd030923.

      Domeisen, D. I. V., and Coauthors, 2020b: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019jd030923.)| false
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011.

    • Crossref
    • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011.10.5194/hess-15-1675-2011)| false
    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., D. M. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809–814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Dunstone, N. J., D. M. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809–814, https://doi.org/10.1038/ngeo2824.10.1038/ngeo2824)| false
    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., and Coauthors, 2018: Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett., 45, 3246–3254, https://doi.org/10.1002/2017GL076337.

    • Crossref
    • Dunstone, N. J., and Coauthors, 2018: Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett., 45, 3246–3254, https://doi.org/10.1002/2017GL076337.10.1002/2017GL076337)| false
    • Search Google Scholar
    • Export Citation
  • Düsterhus, A., 2020: Seasonal statistical–dynamical prediction of the North Atlantic Oscillation by probabilistic post-processing and its evaluation. Nonlinear Processes Geophys ., 27, 121–131, https://doi.org/10.5194/npg-27-121-2020.

    • Crossref
    • Düsterhus, A., 2020: Seasonal statistical–dynamical prediction of the North Atlantic Oscillation by probabilistic post-processing and its evaluation. Nonlinear Processes Geophys., 27, 121–131, https://doi.org/10.5194/npg-27-121-2020.10.5194/npg-27-121-2020)| false
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 5620–5628, https://doi.org/10.1002/2014GL061146.

    • Crossref
    • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 5620–5628, https://doi.org/10.1002/2014GL061146.10.1002/2014GL061146)| false
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918.10.1109/JPROC.2010.2043918)| false
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., L. Magnusson, F. Vitart, and D. S. Richardson, 2018: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? Quart. J. Roy. Meteor. Soc., 144, 1788–1802, https://doi.org/10.1002/qj.3341.

    • Crossref
    • Ferranti, L., L. Magnusson, F. Vitart, and D. S. Richardson, 2018: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? Quart. J. Roy. Meteor. Soc., 144, 1788–1802, https://doi.org/10.1002/qj.3341.10.1002/qj.3341)| false
    • Search Google Scholar
    • Export Citation
  • Flato, G. M., 2011: Earth system models: An overview. Wiley Interdiscip. Rev.: Climate Change, 2, 783–800, https://doi.org/10.1002/wcc.148.

      Flato, G. M., 2011: Earth system models: An overview. Wiley Interdiscip. Rev.: Climate Change, 2, 783–800, https://doi.org/10.1002/wcc.148.)| false
    • Search Google Scholar
    • Export Citation
  • Fujii, Y., and Coauthors, 2015: Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective. Quart. J. Roy. Meteor. Soc., 141, 2481–2496, https://doi.org/10.1002/qj.2579.

    • Crossref
    • Fujii, Y., and Coauthors, 2015: Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective. Quart. J. Roy. Meteor. Soc., 141, 2481–2496, https://doi.org/10.1002/qj.2579.10.1002/qj.2579)| false
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2019: Recognizing the Famine Early Warning Systems Network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteor. Soc., 100, 1011–1027, https://doi.org/10.1175/BAMS-D-17-0233.1.

    • Crossref
    • Funk, C., and Coauthors, 2019: Recognizing the Famine Early Warning Systems Network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteor. Soc., 100, 1011–1027, https://doi.org/10.1175/BAMS-D-17-0233.1.10.1175/BAMS-D-17-0233.1)| false
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and C. Schwartz, 2017: MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models. Geophys. Res. Lett., 44, 10 054–10 062, https://doi.org/10.1002/2017GL074470.

    • Crossref
    • Garfinkel, C. I., and C. Schwartz, 2017: MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models. Geophys. Res. Lett., 44, 10 054–10 062, https://doi.org/10.1002/2017GL074470.10.1002/2017GL074470)| false
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. Gerber, 2013: Effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 2077–2095, https://doi.org/10.1175/JCLI-D-12-00301.1.

    • Crossref
    • Garfinkel, C. I., D. W. Waugh, and E. Gerber, 2013: Effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 2077–2095, https://doi.org/10.1175/JCLI-D-12-00301.1.10.1175/JCLI-D-12-00301.1)| false
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 7855–7866, https://doi.org/10.1029/2018JD028724.

    • Crossref
    • Garfinkel, C. I., C. Schwartz, D. I. V. Domeisen, S.-W. Son, A. H. Butler, and I. P. White, 2018: Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos., 123, 7855–7866, https://doi.org/10.1029/2018JD028724.10.1029/2018JD028724)| false
    • Search Google Scholar
    • Export Citation
  • Gleixner, S., N. S. Keenlyside, T. D. Demissie, F. Counillon, Y. Wang, and E. Viste, 2017: Seasonal predictability of Kiremt rainfall in coupled general circulation models. Environ. Res. Lett., 12, 114 016, https://doi.org/10.1088/1748-9326/aa8cfa.

    • Crossref
    • Gleixner, S., N. S. Keenlyside, T. D. Demissie, F. Counillon, Y. Wang, and E. Viste, 2017: Seasonal predictability of Kiremt rainfall in coupled general circulation models. Environ. Res. Lett., 12, 114 016, https://doi.org/10.1088/1748-9326/aa8cfa.10.1088/1748-9326/aa8cfa)| false
    • Search Google Scholar
    • Export Citation
  • Graham, R. J., and Coauthors, 2011: Long-range forecasting and the global framework for climate services. Climate Res ., 47, 47–55, https://doi.org/10.3354/cr00963.

    • Crossref
    • Graham, R. J., and Coauthors, 2011: Long-range forecasting and the global framework for climate services. Climate Res., 47, 47–55, https://doi.org/10.3354/cr00963.10.3354/cr00963)| false
    • Search Google Scholar
    • Export Citation
  • Hackert, E., R. M. Kovach, A. J. Busalacchi, and J. Ballabrera-Poy, 2019: Impact of Aquarius and SMAP satellite sea surface salinity observations on coupled El Niño/Southern Oscillation forecasts. J. Geophys. Res. Oceans, 124, 4546–4556, https://doi.org/10.1029/2019JC015130.

    • Crossref
    • Hackert, E., R. M. Kovach, A. J. Busalacchi, and J. Ballabrera-Poy, 2019: Impact of Aquarius and SMAP satellite sea surface salinity observations on coupled El Niño/Southern Oscillation forecasts. J. Geophys. Res. Oceans, 124, 4546–4556, https://doi.org/10.1029/2019JC015130.10.1029/2019JC015130)| false
    • Search Google Scholar
    • Export Citation
  • Hansen, F., R. J. Greatbatch, G. Gollan, T. Jung, and A. Weisheimer, 2017: Remote control of North Atlantic Oscillation predictability via the stratosphere. Quart. J. Roy. Meteor. Soc., 143, 706–719, https://doi.org/10.1002/qj.2958.

    • Crossref
    • Hansen, F., R. J. Greatbatch, G. Gollan, T. Jung, and A. Weisheimer, 2017: Remote control of North Atlantic Oscillation predictability via the stratosphere. Quart. J. Roy. Meteor. Soc., 143, 706–719, https://doi.org/10.1002/qj.2958.10.1002/qj.2958)| false
    • Search Google Scholar
    • Export Citation
  • Hao, Z., V. P. Singh, and Y. Xia, 2018: Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys., 56, 108–141, https://doi.org/10.1002/2016RG000549.

    • Crossref
    • Hao, Z., V. P. Singh, and Y. Xia, 2018: Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys., 56, 108–141, https://doi.org/10.1002/2016RG000549.10.1002/2016RG000549)| false
    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., B. J. J. M. van den Hurk, E. Min, G. J. van Oldenborgh, A. C. Petersen, D. A. Stainforth, E. Vasileiadou, and L. A. Smith, 2015: Tales of future weather. Nat. Climate Change, 5, 107–113, https://doi.org/10.1038/nclimate2450.

    • Crossref
    • Hazeleger, W., B. J. J. M. van den Hurk, E. Min, G. J. van Oldenborgh, A. C. Petersen, D. A. Stainforth, E. Vasileiadou, and L. A. Smith, 2015: Tales of future weather. Nat. Climate Change, 5, 107–113, https://doi.org/10.1038/nclimate2450.10.1038/nclimate2450)| false
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 4567–4587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Crossref
    • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 4567–4587, https://doi.org/10.1175/JCLI-D-16-0789.1.10.1175/JCLI-D-16-0789.1)| false
    • Search Google Scholar
    • Export Citation
  • Hudson, D., O. Alves, H. H. Hendon, and A. G. Marshall, 2011: Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Quart. J. Roy. Meteor. Soc., 137, 673–689, https://doi.org/10.1175/MWR-D-13-00059.1.

    • Crossref
    • Hudson, D., O. Alves, H. H. Hendon, and A. G. Marshall, 2011: Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Quart. J. Roy. Meteor. Soc., 137, 673–689, https://doi.org/10.1175/MWR-D-13-00059.1.10.1002/qj.769)| false
    • Search Google Scholar
    • Export Citation
  • Ilyina, T., and P. Friedlingstein, 2016: Biogeochemical cycles and climate change. WCRP Grand Challenge White Paper, 10 pp., www.wcrp-climate.org/JSC37/Documents/BGCGC_whitepaper_submission.pdf.

      Ilyina, T., and P. Friedlingstein, 2016: Biogeochemical cycles and climate change. WCRP Grand Challenge White Paper, 10 pp., www.wcrp-climate.org/JSC37/Documents/BGCGC_whitepaper_submission.pdf.)| false
    • Search Google Scholar
    • Export Citation
  • Infanti, J. M., and B. P. Kirtman, 2019: A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Climate Dyn ., 52, 6877–6892, https://doi.org/10.1007/s00382-018-4553-0.

    • Crossref
    • Infanti, J. M., and B. P. Kirtman, 2019: A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Climate Dyn., 52, 6877–6892, https://doi.org/10.1007/s00382-018-4553-0.10.1007/s00382-018-4553-0)| false
    • Search Google Scholar
    • Export Citation
  • Jain, S., A. A. Scaife, and A. K. Mitra, 2019: Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems. Climate Dyn ., 52, 5291–5301, https://doi.org/10.1007/s00382-018-4449-z.

    • Crossref
    • Jain, S., A. A. Scaife, and A. K. Mitra, 2019: Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems. Climate Dyn., 52, 5291–5301, https://doi.org/10.1007/s00382-018-4449-z.10.1007/s00382-018-4449-z)| false
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., H. W. Linderholm, S.-H. Woo, C. Folland, B.-M. Kim, S.-J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956–1972, https://doi.org/10.1175/JCLI-D-12-00159.1.

    • Crossref
    • Jeong, J.-H., H. W. Linderholm, S.-H. Woo, C. Folland, B.-M. Kim, S.-J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956–1972, https://doi.org/10.1175/JCLI-D-12-00159.1.10.1175/JCLI-D-12-00159.1)| false
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 2044–2062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 2044–2062, https://doi.org/10.1175/JCLI-D-14-00112.1.10.1175/JCLI-D-14-00112.1)| false
    • Search Google Scholar
    • Export Citation
  • Kadow, C., S. Illing, I. Kröner, U. Ulbrich, and U. Cubasch, 2017: Decadal climate predictions improved by ocean ensemble dispersion filtering. J. Adv. Model. Earth Syst., 9, 1138–1149, https://doi.org/10.1002/2016MS000787.

    • Crossref
    • Kadow, C., S. Illing, I. Kröner, U. Ulbrich, and U. Cubasch, 2017: Decadal climate predictions improved by ocean ensemble dispersion filtering. J. Adv. Model. Earth Syst., 9, 1138–1149, https://doi.org/10.1002/2016MS000787.10.1002/2016MS000787)| false
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

      Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.)| false
    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., and Coauthors, 2018: Potential for western US seasonal snowpack prediction. Proc. Natl. Acad. Sci. USA, 115, 1180–1185, https://doi.org/10.1073/pnas.1716760115.

    • Crossref
    • Kapnick, S. B., and Coauthors, 2018: Potential for western US seasonal snowpack prediction. Proc. Natl. Acad. Sci. USA, 115, 1180–1185, https://doi.org/10.1073/pnas.1716760115.10.1073/pnas.1716760115)| false
    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., 2018: Predictability of sudden stratospheric warmings in the ECMWF extended-range forecast system. Mon. Wea. Rev., 146, 1063–1075, https://doi.org/10.1175/MWR-D-17-0317.1.

    • Crossref
    • Karpechko, A. Y., 2018: Predictability of sudden stratospheric warmings in the ECMWF extended-range forecast system. Mon. Wea. Rev., 146, 1063–1075, https://doi.org/10.1175/MWR-D-17-0317.1.10.1175/MWR-D-17-0317.1)| false
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032.

    • Crossref
    • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032.10.1109/JPROC.2010.2043032)| false
    • Search Google Scholar
    • Export Citation
  • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    • Crossref
    • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.10.1038/s41467-017-00755-6)| false
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433–440, https://doi.org/10.1038/ngeo2424.10.1038/ngeo2424)| false
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 7772–7784, https://doi.org/10.1002/2017JD027005.

    • Crossref
    • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 7772–7784, https://doi.org/10.1002/2017JD027005.10.1002/2017JD027005)| false
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 9425–9443, https://doi.org/10.1175/JCLI-D-18-0210.1.

    • Crossref
    • Kim, H.-M., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 9425–9443, https://doi.org/10.1175/JCLI-D-18-0210.1.10.1175/JCLI-D-18-0210.1)| false
    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. G. Yeager, and G. Danabasoglu, 2018: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century. Geophys. Res. Lett., 45, 13 449–13 457, https://doi.org/10.1029/2018GL080474.

    • Crossref
    • Kim, W. M., S. G. Yeager, and G. Danabasoglu, 2018: Key role of internal ocean dynamics in Atlantic multidecadal variability during the last half century. Geophys. Res. Lett., 45, 13 449–13 457, https://doi.org/10.1029/2018GL080474.10.1029/2018GL080474)| false
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Phys. Chem., 15, 6577–6587, https://doi.org/10.5194/acp-15-6577-2015.

    • Crossref
    • Kim, Y.-H., and H.-Y. Chun, 2015: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Phys. Chem., 15, 6577–6587, https://doi.org/10.5194/acp-15-6577-2015.10.5194/acp-15-6577-2015)| false
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., D. Anderson, G. Brunet, I. S. Kang, A. A. Scaife, and D. M. Smith, 2013: Prediction from weeks to decades. Climate Science for Serving Society, G. R. Asrar and J. W. Hurrell, Eds., Springer, 205–235.

    • Crossref
    • Kirtman, B., D. Anderson, G. Brunet, I. S. Kang, A. A. Scaife, and D. M. Smith, 2013: Prediction from weeks to decades. Climate Science for Serving Society, G. R. Asrar and J. W. Hurrell, Eds., Springer, 205–235.10.1007/978-94-007-6692-1_8)| false
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Kirtman, B., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-D-12-00050.1.10.1175/BAMS-D-12-00050.1)| false
    • Search Google Scholar
    • Export Citation
  • Klemm, T., and R. A. McPherson, 2017: The development of seasonal climate forecasting for agricultural producers. Agric. For. Meteor., 232, 384–399, https://doi.org/10.1016/j.agrformet.2016.09.005.

    • Crossref
    • Klemm, T., and R. A. McPherson, 2017: The development of seasonal climate forecasting for agricultural producers. Agric. For. Meteor., 232, 384–399, https://doi.org/10.1016/j.agrformet.2016.09.005.10.1016/j.agrformet.2016.09.005)| false
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and Coauthors, 2019: Trials, errors and improvements in coproduction of climate services. Bull. Amer. Meteor. Soc., 100, 1419–1428, https://doi.org/10.1175/BAMS-D-18-0201.1.

    • Crossref
    • Kolstad, E. W., and Coauthors, 2019: Trials, errors and improvements in coproduction of climate services. Bull. Amer. Meteor. Soc., 100, 1419–1428, https://doi.org/10.1175/BAMS-D-18-0201.1.10.1175/BAMS-D-18-0201.1)| false
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.10.1126/science.1100217)| false
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Z. Guo, P. A. Dirmeyer, R. Yang, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1.

    • Crossref
    • Koster, R. D., Z. Guo, P. A. Dirmeyer, R. Yang, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1.10.1175/2009JCLI2832.1)| false
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805–822, https://doi.org/10.1175/2011JHM1365.1.

    • Crossref
    • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805–822, https://doi.org/10.1175/2011JHM1365.1.10.1175/2011JHM1365.1)| false
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 7345–7364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 7345–7364, https://doi.org/10.1175/JCLI-D-16-0192.1.10.1175/JCLI-D-16-0192.1)| false
    • Search Google Scholar
    • Export Citation
  • Kröger, J., and Coauthors, 2018: Full-field initialized decadal predictions with the MPI Earth system model: An initial shock in the North Atlantic. Climate Dyn ., 51, 2593–2608, https://doi.org/10.1007/s00382-017-4030-1.

    • Crossref
    • Kröger, J., and Coauthors, 2018: Full-field initialized decadal predictions with the MPI Earth system model: An initial shock in the North Atlantic. Climate Dyn., 51, 2593–2608, https://doi.org/10.1007/s00382-017-4030-1.10.1007/s00382-017-4030-1)| false
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and Coauthors, 2019: Towards operational predictions of the near-term climate. Nat. Climate Change, 9, 94–101, https://doi.org/10.1038/s41558-018-0359-7.

    • Crossref
    • Kushnir, Y., and Coauthors, 2019: Towards operational predictions of the near-term climate. Nat. Climate Change, 9, 94–101, https://doi.org/10.1038/s41558-018-0359-7.10.1038/s41558-018-0359-7)| false
    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Sub-seasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967–988, https://doi.org/10.1175/WAF-D-17-0165.1.

    • Crossref
    • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Sub-seasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967–988, https://doi.org/10.1175/WAF-D-17-0165.1.10.1175/WAF-D-17-0165.1)| false
    • Search Google Scholar
    • Export Citation
  • Lee, R., S. Woolnough, A. Charlton-Perez, and F. Vitart, 2019: ENSO modulation of MJO teleconnection to the North Atlantic and Europe. Geophys. Res. Lett., 46, 13 535–13 545, https://doi.org/10.1029/2019GL084683.

    • Crossref
    • Lee, R., S. Woolnough, A. Charlton-Perez, and F. Vitart, 2019: ENSO modulation of MJO teleconnection to the North Atlantic and Europe. Geophys. Res. Lett., 46, 13 535–13 545, https://doi.org/10.1029/2019GL084683.10.1029/2019GL084683)| false
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. Pappenberger, 2017: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett., 44, 12 208–12 217, https://doi.org/10.1002/2017GL076043.

    • Crossref
    • Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. Pappenberger, 2017: Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett., 44, 12 208–12 217, https://doi.org/10.1002/2017GL076043.10.1002/2017GL076043)| false
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.1002/qj.3094.10.1002/qj.3094)| false
    • Search Google Scholar
    • Export Citation
  • Li, B., M. Rodell, B. F. Zaitchik, R. H. Reichle, R. D. Koster, and T. M. van Dam, 2012: Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol., 446–447, 103–115, https://doi.org/10.1016/j.jhydrol.2012.04.035.

    • Crossref
    • Li, B., M. Rodell, B. F. Zaitchik, R. H. Reichle, R. D. Koster, and T. M. van Dam, 2012: Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe. J. Hydrol., 446–447, 103–115, https://doi.org/10.1016/j.jhydrol.2012.04.035.10.1016/j.jhydrol.2012.04.035)| false
    • Search Google Scholar
    • Export Citation
  • Li, F., Y. J. Orsolini, N. Keenlyside, M.-L. Shen, F. Counillon, and Y. Wang, 2019: Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model. J. Geophys. Res. Atmos., 124, 10 033–10 048, https://doi.org/10.1029/2019JD030903.

    • Crossref
    • Li, F., Y. J. Orsolini, N. Keenlyside, M.-L. Shen, F. Counillon, and Y. Wang, 2019: Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model. J. Geophys. Res. Atmos., 124, 10 033–10 048, https://doi.org/10.1029/2019JD030903.10.1029/2019JD030903)| false
    • Search Google Scholar
    • Export Citation
  • Li, H., and T. Ilyina, 2018: Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophys. Res. Lett., 45, 916–925, https://doi.org/10.1002/2017GL075370.

    • Crossref
    • Li, H., and T. Ilyina, 2018: Current and future decadal trends in the oceanic carbon uptake are dominated by internal variability. Geophys. Res. Lett., 45, 916–925, https://doi.org/10.1002/2017GL075370.10.1002/2017GL075370)| false
    • Search Google Scholar
    • Export Citation
  • Li, H., T. Ilyina, A. Wolfgang, A. Müller, and F. Sienz, 2016: Decadal predictions of the North Atlantic CO2 uptake. Nat. Commun., 7, 11 076, https://doi.org/10.1038/ncomms11076.

    • Crossref
    • Li, H., T. Ilyina, A. Wolfgang, A. Müller, and F. Sienz, 2016: Decadal predictions of the North Atlantic CO2 uptake. Nat. Commun., 7, 11 076, https://doi.org/10.1038/ncomms11076.10.1038/ncomms11076)| false
    • Search Google Scholar
    • Export Citation
  • Li, H., T. Ilyina, W. A. Müller, and P. Landschützer, 2019: Predicting the variable ocean carbon sink. Sci. Adv., 5, eaav6471, https://doi.org/10.1126/sciadv.aav6471.

    • Crossref
    • Li, H., T. Ilyina, W. A. Müller, and P. Landschützer, 2019: Predicting the variable ocean carbon sink. Sci. Adv., 5, eaav6471, https://doi.org/10.1126/sciadv.aav6471.10.1126/sciadv.aav6471)| false
    • Search Google Scholar
    • Export Citation
  • Li, S., and A. W. Robertson, 2015: Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Wea. Rev., 143, 2871–2889, https://doi.org/10.1175/MWR-D-14-00277.1.

    • Crossref
    • Li, S., and A. W. Robertson, 2015: Evaluation of submonthly precipitation forecast skill from global ensemble prediction systems. Mon. Wea. Rev., 143, 2871–2889, https://doi.org/10.1175/MWR-D-14-00277.1.10.1175/MWR-D-14-00277.1)| false
    • Search Google Scholar
    • Export Citation
  • Li, X., G. Gollan, R. J. Greatbatch, and R. Lu, 2018: Intraseasonal variation of the East Asian summer monsoon associated with the Madden–Julian oscillation. Atmos. Sci. Lett., 19, e794, https://doi.org/10.1002/asl.794.

    • Crossref
    • Li, X., G. Gollan, R. J. Greatbatch, and R. Lu, 2018: Intraseasonal variation of the East Asian summer monsoon associated with the Madden–Julian oscillation. Atmos. Sci. Lett., 19, e794, https://doi.org/10.1002/asl.794.10.1002/asl.794)| false
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and H. H. Hendon, 2017: Causes and predictability of the negative Indian Ocean dipole and its impact on La Niña during 2016. Sci. Rep., 7, 12619, https://doi.org/10.1038/s41598-017-12674-z.

    • Crossref
    • Lim, E.-P., and H. H. Hendon, 2017: Causes and predictability of the negative Indian Ocean dipole and its impact on La Niña during 2016. Sci. Rep., 7, 12619, https://doi.org/10.1038/s41598-017-12674-z.10.1038/s41598-017-12674-z)| false
    • Search Google Scholar
    • Export Citation
  • Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1.

    • Crossref
    • Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1.10.1175/JCLI-D-17-0545.1)| false
    • Search Google Scholar
    • Export Citation
  • Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn ., 53, 1681–1695, https://doi.org/10.1007/s00382-019-04719-y.

    • Crossref
    • Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn., 53, 1681–1695, https://doi.org/10.1007/s00382-019-04719-y.10.1007/s00382-019-04719-y)| false
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Frederiksen, D. Straus, and C. Stan, 2019: Tropical-extratropical interactions and teleconnections. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 143–164.

    • Crossref
    • Lin, H., J. Frederiksen, D. Straus, and C. Stan, 2019: Tropical-extratropical interactions and teleconnections. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 143–164.10.1016/B978-0-12-811714-9.00007-3)| false
    • Search Google Scholar
    • Export Citation
  • Liu, X., X. Wang, and A. Kumar, 2018: Multiweek prediction skill assessment of Arctic sea ice variability in the CFSv2. Wea. Forecasting, 33, 1453–1476, https://doi.org/10.1175/WAF-D-18-0046.1.

    • Crossref
    • Liu, X., X. Wang, and A. Kumar, 2018: Multiweek prediction skill assessment of Arctic sea ice variability in the CFSv2. Wea. Forecasting, 33, 1453–1476, https://doi.org/10.1175/WAF-D-18-0046.1.10.1175/WAF-D-18-0046.1)| false
    • Search Google Scholar
    • Export Citation
  • Lledó, L., V. Torralba, A. Soret, J. Ramon, and F. J. Doblas-Reyes, 2019: Seasonal forecasts of wind power generation. Renewable Energy, 143, 91–100, https://doi.org/10.1016/j.renene.2019.04.135.

    • Crossref
    • Lledó, L., V. Torralba, A. Soret, J. Ramon, and F. J. Doblas-Reyes, 2019: Seasonal forecasts of wind power generation. Renewable Energy, 143, 91–100, https://doi.org/10.1016/j.renene.2019.04.135.10.1016/j.renene.2019.04.135)| false
    • Search Google Scholar
    • Export Citation
  • Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 593–14 629, https://doi.org/10.5194/acp-17-14593-2017.

    • Crossref
    • Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 593–14 629, https://doi.org/10.5194/acp-17-14593-2017.10.5194/acp-17-14593-2017)| false
    • Search Google Scholar
    • Export Citation
  • Lovenduski, N., S. G. Yeager, K. Lindsay, and M. C. Long, 2019a: Predicting near-term variability in ocean carbon uptake. Earth Syst. Dyn., 10, 45–57, https://doi.org/10.5194/esd-10-45-2019.

    • Crossref
    • Lovenduski, N., S. G. Yeager, K. Lindsay, and M. C. Long, 2019a: Predicting near-term variability in ocean carbon uptake. Earth Syst. Dyn., 10, 45–57, https://doi.org/10.5194/esd-10-45-2019.10.5194/esd-10-45-2019)| false
    • Search Google Scholar
    • Export Citation
  • Lovenduski, N., G. B. Bonan, S. G. Yeager, K. Lindsay, and D. L. Lombardozzi, 2019b: High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environ. Res. Lett., 14, 124 074, https://doi.org/10.1088/1748-9326/ab5c55.

    • Crossref
    • Lovenduski, N., G. B. Bonan, S. G. Yeager, K. Lindsay, and D. L. Lombardozzi, 2019b: High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environ. Res. Lett., 14, 124 074, https://doi.org/10.1088/1748-9326/ab5c55.10.1088/1748-9326/ab5c55)| false
    • Search Google Scholar
    • Export Citation
  • Lowe, R., M. García-Díez, J. Ballester, J. Creswick, J.-M. Robine, F. R. Herrmann, and X. Rodó, 2016: Evaluation of an early-warning system for heat wave-related mortality in Europe: Implications for sub-seasonal to seasonal forecasting and climate services. Int. J. Environ. Res. Public Health, 13, 206, https://doi.org/10.3390/ijerph13020206.

    • Crossref
    • Lowe, R., M. García-Díez, J. Ballester, J. Creswick, J.-M. Robine, F. R. Herrmann, and X. Rodó, 2016: Evaluation of an early-warning system for heat wave-related mortality in Europe: Implications for sub-seasonal to seasonal forecasting and climate services. Int. J. Environ. Res. Public Health, 13, 206, https://doi.org/10.3390/ijerph13020206.10.3390/ijerph13020206)| false
    • Search Google Scholar
    • Export Citation
  • Lu, B., A. A. Scaife, N. Dunstone, D. Smith, H.-L. Ren, Y. Liu, and R. Eade, 2017: Skillful seasonal predictions of winter precipitation over southern China. Environ. Res. Lett., 12, 074021, https://doi.org/10.1088/1748-9326/aa739a.

    • Crossref
    • Lu, B., A. A. Scaife, N. Dunstone, D. Smith, H.-L. Ren, Y. Liu, and R. Eade, 2017: Skillful seasonal predictions of winter precipitation over southern China. Environ. Res. Lett., 12, 074021, https://doi.org/10.1088/1748-9326/aa739a.10.1088/1748-9326/aa739a)| false
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84–93, https://doi.org/10.1175/2007JCLI1412.1.

    • Crossref
    • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84–93, https://doi.org/10.1175/2007JCLI1412.1.10.1175/2007JCLI1412.1)| false
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.

    • Crossref
    • Luo, J.-J., G. Liu, H. Hendon, O. Alves, and T. Yamagata, 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276, https://doi.org/10.1038/s41598-017-01479-9.10.1038/s41598-017-01479-9)| false
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2019: Process-oriented evaluation of climate and weather forecasting models. Bull. Amer. Meteor. Soc., 100, 1665–1686, https://doi.org/10.1175/BAMS-D-18-0042.1.

    • Crossref
    • Maloney, E. D., and Coauthors, 2019: Process-oriented evaluation of climate and weather forecasting models. Bull. Amer. Meteor. Soc., 100, 1665–1686, https://doi.org/10.1175/BAMS-D-18-0042.1.10.1175/BAMS-D-18-0042.1)| false
    • Search Google Scholar
    • Export Citation
  • Manzanas, R., J. M. Gutiérrez, J. Fernández, E. van Meijgaard, S. Calmanti, M. E. Magariño, A. S. Cofiño, and S. Herrera, 2018: Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Serv ., 9, 44–56, https://doi.org/10.1016/j.cliser.2017.06.004.

    • Crossref
    • Manzanas, R., J. M. Gutiérrez, J. Fernández, E. van Meijgaard, S. Calmanti, M. E. Magariño, A. S. Cofiño, and S. Herrera, 2018: Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Serv., 9, 44–56, https://doi.org/10.1016/j.cliser.2017.06.004.10.1016/j.cliser.2017.06.004)| false
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.

    • Crossref
    • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.10.1038/s41612-018-0014-z)| false
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608–E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Crossref
    • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608–E625, https://doi.org/10.1175/BAMS-D-18-0326.1.10.1175/BAMS-D-18-0326.1)| false
    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and Coauthors, 2016: MiKlip—A national research project on decadal climate prediction. Bull. Amer. Meteor. Soc., 97, 2379–2394, https://doi.org/10.1175/BAMS-D-15-00184.1.

    • Crossref
    • Marotzke, J., and Coauthors, 2016: MiKlip—A national research project on decadal climate prediction. Bull. Amer. Meteor. Soc., 97, 2379–2394, https://doi.org/10.1175/BAMS-D-15-00184.1.10.1175/BAMS-D-15-00184.1)| false
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn ., 49, 1365–1377, https://doi.org/10.1007/s00382-016-3392-0.

    • Crossref
    • Marshall, A. G., H. H. Hendon, S.-W. Son, and Y. Lim, 2017: Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Climate Dyn., 49, 1365–1377, https://doi.org/10.1007/s00382-016-3392-0.10.1007/s00382-016-3392-0)| false
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 943–10 951, https://doi.org/10.1002/2015GL066754.

    • Crossref
    • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 943–10 951, https://doi.org/10.1002/2015GL066754.10.1002/2015GL066754)| false
    • Search Google Scholar
    • Export Citation
  • McKinnon, K., A. Rhines, M. Tingly, and P. Huybers, 2016: Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci., 9, 389–394, https://doi.org/10.1038/ngeo2687.

    • Crossref
    • McKinnon, K., A. Rhines, M. Tingly, and P. Huybers, 2016: Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci., 9, 389–394, https://doi.org/10.1038/ngeo2687.10.1038/ngeo2687)| false
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Crossref
    • Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.10.1038/ncomms11718)| false
    • Search Google Scholar
    • Export Citation
  • Ménégoz, M., R. Bilbao, O. Bellprat, V. Guemas, and F. J. Doblas-Reyes, 2018: Forecasting the climate response to volcanic eruptions: Prediction skill related to stratospheric aerosol forcing. Environ. Res. Lett., 13, 064022, https://doi.org/10.1088/1748-9326/aac4db.

    • Crossref
    • Ménégoz, M., R. Bilbao, O. Bellprat, V. Guemas, and F. J. Doblas-Reyes, 2018: Forecasting the climate response to volcanic eruptions: Prediction skill related to stratospheric aerosol forcing. Environ. Res. Lett., 13, 064022, https://doi.org/10.1088/1748-9326/aac4db.10.1088/1748-9326/aac4db)| false
    • Search Google Scholar
    • Export Citation
  • Misios, S., L. J. Gray, M. F. Knudsen, C. Karoff, H. Schmidt, and J. D. Haigh, 2019: Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. USA, 116, 7186–7191, https://doi.org/10.1073/pnas.1815060116.

    • Crossref
    • Misios, S., L. J. Gray, M. F. Knudsen, C. Karoff, H. Schmidt, and J. D. Haigh, 2019: Slowdown of the Walker circulation at solar cycle maximum. Proc. Natl. Acad. Sci. USA, 116, 7186–7191, https://doi.org/10.1073/pnas.1815060116.10.1073/pnas.1815060116)| false
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., J. Robson, B. Dong, and N. Dunstone, 2018: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Climate Dyn ., 51, 473–491, https://doi.org/10.1007/s00382-017-3935-z.

    • Crossref
    • Monerie, P.-A., J. Robson, B. Dong, and N. Dunstone, 2018: A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia? Climate Dyn., 51, 473–491, https://doi.org/10.1007/s00382-017-3935-z.10.1007/s00382-017-3935-z)| false
    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the southern Great Plains. J. Geophys. Res. Atmos., 123, 2655–2683, https://doi.org/10.1002/2017JD027199.

    • Crossref
    • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the southern Great Plains. J. Geophys. Res. Atmos., 123, 2655–2683, https://doi.org/10.1002/2017JD027199.10.1002/2017JD027199)| false
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 1383–1413, https://doi.org/10.1029/2017MS001217.

    • Crossref
    • Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 1383–1413, https://doi.org/10.1029/2017MS001217.10.1029/2017MS001217)| false
    • Search Google Scholar
    • Export Citation
  • Mulholland, D. P., P. Laloyaux, K. Haines, and M. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 4631–4644, https://doi.org/10.1175/MWR-D-15-0076.1.

    • Crossref
    • Mulholland, D. P., P. Laloyaux, K. Haines, and M. Balmaseda, 2015: Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon. Wea. Rev., 143, 4631–4644, https://doi.org/10.1175/MWR-D-15-0076.1.10.1175/MWR-D-15-0076.1)| false
    • Search Google Scholar
    • Export Citation
  • Muñoz-Sabater, J., H. Lawrence, C. Albergel, P. de Rosnay, L. Isaksen, S. Mecklenburg, Y. Kerr, and M. Drusch, 2019: Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 145, 2524–2548, https://doi.org/10.1002/QJ.3577.

    • Crossref
    • Muñoz-Sabater, J., H. Lawrence, C. Albergel, P. de Rosnay, L. Isaksen, S. Mecklenburg, Y. Kerr, and M. Drusch, 2019: Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 145, 2524–2548, https://doi.org/10.1002/QJ.3577.10.1002/qj.3577)| false
    • Search Google Scholar
    • Export Citation
  • Neddermann, N. C., W. A. Müller, M. Dobrynin, A. Düsterhus, and J. Baehr, 2019: Seasonal predictability of European summer climate re-assessed. Climate Dyn ., 53, 3039–3056, https://doi.org/10.1007/s00382-019-04678-4.

    • Crossref
    • Neddermann, N. C., W. A. Müller, M. Dobrynin, A. Düsterhus, and J. Baehr, 2019: Seasonal predictability of European summer climate re-assessed. Climate Dyn., 53, 3039–3056, https://doi.org/10.1007/s00382-019-04678-4.10.1007/s00382-019-04678-4)| false
    • Search Google Scholar
    • Export Citation
  • Nie, Y., A. A. Scaife, H.-L. Ren, R. E. Comer, M. B. Andrews, P. Davis, and N. Martin, 2019: Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations. Environ. Res. Lett., 14, 034006, https://doi.org/10.1088/1748-9326/ab0385.

    • Crossref
    • Nie, Y., A. A. Scaife, H.-L. Ren, R. E. Comer, M. B. Andrews, P. Davis, and N. Martin, 2019: Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations. Environ. Res. Lett., 14, 034006, https://doi.org/10.1088/1748-9326/ab0385.10.1088/1748-9326/ab0385)| false
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 1105–1125, https://doi.org/10.1175/JAS-D-16-0205.1.

    • Crossref
    • Nishimoto, E., and S. Yoden, 2017: Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci., 74, 1105–1125, https://doi.org/10.1175/JAS-D-16-0205.1.10.1175/JAS-D-16-0205.1)| false
    • Search Google Scholar
    • Export Citation
  • Nnamchi, H. C., J. Li, F. Kucharski, I.-S. Kang, N. S. Keenlyside, P. Chang, and R. Farneti, 2015: Thermodynamic controls of the Atlantic Niño. Nat. Commun., 6, 8895, https://doi.org/10.1038/ncomms9895.

    • Crossref
    • Nnamchi, H. C., J. Li, F. Kucharski, I.-S. Kang, N. S. Keenlyside, P. Chang, and R. Farneti, 2015: Thermodynamic controls of the Atlantic Niño. Nat. Commun., 6, 8895, https://doi.org/10.1038/ncomms9895.10.1038/ncomms9895)| false
    • Search Google Scholar
    • Export Citation
  • Nowack, P., P. Braesicke, J. Haigh, N. L. Abraham, J. Pyle, and A. Voulgarakis, 2018: Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. Environ. Res. Lett., 13, 104 016, https://doi.org/10.1088/1748-9326/aae2be.

    • Crossref
    • Nowack, P., P. Braesicke, J. Haigh, N. L. Abraham, J. Pyle, and A. Voulgarakis, 2018: Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. Environ. Res. Lett., 13, 104 016, https://doi.org/10.1088/1748-9326/aae2be.10.1088/1748-9326/aae2be)| false
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., 2018: Interdecadal variability of the ENSO teleconnection to the wintertime North Pacific. Climate Dyn., 51, 3333–3350, https://doi.org/10.1007/s00382-018-4081-y.

    • Crossref
    • O’Reilly, C. H., 2018: Interdecadal variability of the ENSO teleconnection to the wintertime North Pacific. Climate Dyn., 51, 3333–3350, https://doi.org/10.1007/s00382-018-4081-y.10.1007/s00382-018-4081-y)| false
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 6481–6504, https://doi.org/10.1175/JCLI-D-17-0451.1.

    • Crossref
    • O’Reilly, C. H., T. Woollings, L. Zanna, and A. Weisheimer, 2018: The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Climate, 31, 6481–6504, https://doi.org/10.1175/JCLI-D-17-0451.1.10.1175/JCLI-D-17-0451.1)| false
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., A. Weisheimer, T. Woollings, L. Gray, and D. MacLeod, 2019: The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal-to-noise paradox. Quart. J. Roy. Meteor. Soc., 145, 131–146, https://doi.org/10.1002/qj.3413.

    • Crossref
    • O’Reilly, C. H., A. Weisheimer, T. Woollings, L. Gray, and D. MacLeod, 2019: The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal-to-noise paradox. Quart. J. Roy. Meteor. Soc., 145, 131–146, https://doi.org/10.1002/qj.3413.10.1002/qj.3413)| false
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn ., 41, 1969–1982, https://doi.org/10.1007/s00382-013-1782-0.

    • Crossref
    • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 1969–1982, https://doi.org/10.1007/s00382-013-1782-0.10.1007/s00382-013-1782-0)| false
    • Search Google Scholar
    • Export Citation
  • Pasternack, A., J. Bhend, M. A. Liniger, H. W. Rust, W. A. Müller, and U. Ulbrich, 2018: Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018.

    • Crossref
    • Pasternack, A., J. Bhend, M. A. Liniger, H. W. Rust, W. A. Müller, and U. Ulbrich, 2018: Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018.10.5194/gmd-11-351-2018)| false
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 5395–5416, https://doi.org/10.1175/JCLI-D-17-0678.1.

    • Crossref
    • Patricola, C. M., S. J. Camargo, P. J. Klotzbach, R. Saravanan, and P. Chang, 2018: The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Climate, 31, 5395–5416, https://doi.org/10.1175/JCLI-D-17-0678.1.10.1175/JCLI-D-17-0678.1)| false
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 2043–2060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 2043–2060, https://doi.org/10.1175/BAMS-D-18-0270.1.10.1175/BAMS-D-18-0270.1)| false
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169–ES172, https://doi.org/10.1175/BAMS-D-17-0036.1.

    • Crossref
    • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated Earth system analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169–ES172, https://doi.org/10.1175/BAMS-D-17-0036.1.10.1175/BAMS-D-17-0036.1)| false
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., and Coauthors, 2017: Coupled data assimilation for integrated Earth system analysis and prediction: Goals, challenges and recommendations. WMO Tech. Rep. WWRP 2017-3, 59 pp.

      Penny, S. G., and Coauthors, 2017: Coupled data assimilation for integrated Earth system analysis and prediction: Goals, challenges and recommendations. WMO Tech. Rep. WWRP 2017-3, 59 pp.)| false
    • Search Google Scholar
    • Export Citation
  • Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst., 11, 1803–1829, https://doi.org/10.1029/2019MS001652.

    • Crossref
    • Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. J. Adv. Model. Earth Syst., 11, 1803–1829, https://doi.org/10.1029/2019MS001652.10.1029/2019MS001652)| false
    • Search Google Scholar
    • Export Citation
  • Polkova, I., and Coauthors, 2019: Initialization and ensemble generation for decadal climate predictions: A comparison of different methods. J. Adv. Model. Earth Syst., 11, 149–172, https://doi.org/10.1029/2018MS001439.

    • Crossref
    • Polkova, I., and Coauthors, 2019: Initialization and ensemble generation for decadal climate predictions: A comparison of different methods. J. Adv. Model. Earth Syst., 11, 149–172, https://doi.org/10.1029/2018MS001439.10.1029/2018MS001439)| false
    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016a: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn ., 47, 919–935, https://doi.org/10.1007/s00382-015-2879-4.

    • Crossref
    • Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2016a: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 47, 919–935, https://doi.org/10.1007/s00382-015-2879-4.10.1007/s00382-015-2879-4)| false
    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., L. Batté, F. Massonnet, P. Davini, O. Bellprat, V. Guemas, and F. Doblas-Reyes, 2016b: Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. J. Climate, 29, 9141–9162, https://doi.org/10.1175/JCLI-D-16-0117.1.

    • Crossref
    • Prodhomme, C., L. Batté, F. Massonnet, P. Davini, O. Bellprat, V. Guemas, and F. Doblas-Reyes, 2016b: Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. J. Climate, 29, 9141–9162, https://doi.org/10.1175/JCLI-D-16-0117.1.10.1175/JCLI-D-16-0117.1)| false
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., S. J. Camargo, A. Sobel, F. Vitart, and S. Wang, 2018: Summary of workshop on sub-seasonal to seasonal predictability of extreme weather and climate. npj Climate Atmos. Sci., 1, 20178, https://doi.org/10.1038/s41612-017-0009-1.

      Robertson, A. W., S. J. Camargo, A. Sobel, F. Vitart, and S. Wang, 2018: Summary of workshop on sub-seasonal to seasonal predictability of extreme weather and climate. npj Climate Atmos. Sci., 1, 20178, https://doi.org/10.1038/s41612-017-0009-1.)| false
    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513–517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513–517, https://doi.org/10.1038/ngeo2727.10.1038/ngeo2727)| false
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 2785–2810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 2785–2810, https://doi.org/10.1175/JCLI-D-16-0127.1.10.1175/JCLI-D-16-0127.1)| false
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 3679–3700, https://doi.org/10.1175/JCLI-D-17-0270.1.

    • Crossref
    • Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 3679–3700, https://doi.org/10.1175/JCLI-D-17-0270.1.10.1175/JCLI-D-17-0270.1)| false
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2016: Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dyn ., 46, 1819–1840, https://doi.org/10.1007/s00382-015-2678-y.

    • Crossref
    • Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2016: Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dyn., 46, 1819–1840, https://doi.org/10.1007/s00382-015-2678-y.10.1007/s00382-015-2678-y)| false
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 1253–1272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 1253–1272, https://doi.org/10.1175/BAMS-D-17-0001.1.10.1175/BAMS-D-17-0001.1)| false
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2019: Midlatitude mesoscale ocean-atmosphere interaction and its relevance to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 183–200.

    • Crossref
    • Saravanan, R., and P. Chang, 2019: Midlatitude mesoscale ocean-atmosphere interaction and its relevance to S2S prediction. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 183–200.10.1016/B978-0-12-811714-9.00009-7)| false
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4.

    • Crossref
    • Scaife, A. A., and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/s41612-018-0038-4.10.1038/s41612-018-0038-4)| false
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014a: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752–1758, https://doi.org/10.1002/2013GL059160.

    • Crossref
    • Scaife, A. A., and Coauthors, 2014a: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752–1758, https://doi.org/10.1002/2013GL059160.10.1002/2013GL059160)| false
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014b: Skillful long-range predictions of European and North American winters. Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Scaife, A. A., and Coauthors, 2014b: Skillful long-range predictions of European and North American winters. Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637.10.1002/2014GL059637)| false
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 1–11, https://doi.org/10.1002/qj.2910.

    • Crossref
    • Scaife, A. A., and Coauthors, 2017: Tropical rainfall, Rossby waves and regional winter climate predictions. Quart. J. Roy. Meteor. Soc., 143, 1–11, https://doi.org/10.1002/qj.2910.10.1002/qj.2910)| false
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2019: Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett., 20, e922, https://doi.org/10.1002/asl.922.

    • Crossref
    • Scaife, A. A., and Coauthors, 2019: Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett., 20, e922, https://doi.org/10.1002/asl.922.10.1002/asl.922)| false
    • Search Google Scholar
    • Export Citation
  • Schuster, M., and Coauthors, 2019: Improvement in the decadal prediction skill of the Northern Hemisphere extra-tropical winter circulation through increased model resolution. Earth Syst. Dyn., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019.

    • Crossref
    • Schuster, M., and Coauthors, 2019: Improvement in the decadal prediction skill of the Northern Hemisphere extra-tropical winter circulation through increased model resolution. Earth Syst. Dyn., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019.10.5194/esd-10-901-2019)| false
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., D. M. Smith, N. J. Dunstone, R. Eade, D. P. Rowell, and M. Vellinga, 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nat. Commun., 8, 14 966, https://doi.org/10.1038/ncomms14966.

    • Crossref
    • Sheen, K. L., D. M. Smith, N. J. Dunstone, R. Eade, D. P. Rowell, and M. Vellinga, 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nat. Commun., 8, 14 966, https://doi.org/10.1038/ncomms14966.10.1038/ncomms14966)| false
    • Search Google Scholar
    • Export Citation
  • Shen, M.-L., N. Keenlyside, F. Selten, W. Wiegerinck, and G. S. Duane, 2016: Dynamically combining climate models to “supermodel” the tropical Pacific. Geophys. Res. Lett., 43, 359–366, https://doi.org/10.1002/2015GL066562.

    • Crossref
    • Shen, M.-L., N. Keenlyside, F. Selten, W. Wiegerinck, and G. S. Duane, 2016: Dynamically combining climate models to “supermodel” the tropical Pacific. Geophys. Res. Lett., 43, 359–366, https://doi.org/10.1002/2015GL066562.10.1002/2015GL066562)| false
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., E. Guilyardi, T. Toniazzo, S. J. Woolnough, and T. Stockdale, 2018: Identifying causes of western Pacific ITCZ drift in ECMWF System 4 hindcasts. Climate Dyn ., 50, 939–954, https://doi.org/10.1007/s00382-017-3650-9.

    • Crossref
    • Shonk, J. K. P., E. Guilyardi, T. Toniazzo, S. J. Woolnough, and T. Stockdale, 2018: Identifying causes of western Pacific ITCZ drift in ECMWF System 4 hindcasts. Climate Dyn., 50, 939–954, https://doi.org/10.1007/s00382-017-3650-9.10.1007/s00382-017-3650-9)| false
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698.

    • Crossref
    • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698.10.1038/ngeo1698)| false
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., P. Hitchcock, R. Seager, Y. Wu, and P. Callaghan, 2018: The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Climate, 31, 6371–6391, https://doi.org/10.1175/JCLI-D-18-0041.1.

    • Crossref
    • Simpson, I. R., P. Hitchcock, R. Seager, Y. Wu, and P. Callaghan, 2018: The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Climate, 31, 6371–6391, https://doi.org/10.1175/JCLI-D-18-0041.1.10.1175/JCLI-D-18-0041.1)| false
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2016: Role of the volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936–940, https://doi.org/10.1038/nclimate3058.

    • Crossref
    • Smith, D. M., and Coauthors, 2016: Role of the volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936–940, https://doi.org/10.1038/nclimate3058.10.1038/nclimate3058)| false
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: Robust skill of decadal climate predictions. npj Climate Atmos. Sci., 2, 13, https://doi.org/10.1038/s41612-019-0071-y.

    • Crossref
    • Smith, D. M., and Coauthors, 2019: Robust skill of decadal climate predictions. npj Climate Atmos. Sci., 2, 13, https://doi.org/10.1038/s41612-019-0071-y.10.1038/s41612-019-0071-y)| false
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., L. Mudryk, W. J. Merryfield, and C. Derksen, 2016a: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part I. Initialization. J. Hydrometeor., 17, 1467–1488, https://doi.org/10.1175/JHM-D-14-0223.1.

    • Crossref
    • Sospedra-Alfonso, R., L. Mudryk, W. J. Merryfield, and C. Derksen, 2016a: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part I. Initialization. J. Hydrometeor., 17, 1467–1488, https://doi.org/10.1175/JHM-D-14-0223.1.10.1175/JHM-D-14-0223.1)| false
    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., W. J. Merryfield, and V. V. Kharin, 2016b: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part II. Potential predictability and hindcast skill. J. Hydrometeor., 17, 2511–2535, https://doi.org/10.1175/JHM-D-16-0027.1.

    • Crossref
    • Sospedra-Alfonso, R., W. J. Merryfield, and V. V. Kharin, 2016b: Representation of snow in the Canadian Seasonal to Interannual Prediction System: Part II. Potential predictability and hindcast skill. J. Hydrometeor., 17, 2511–2535, https://doi.org/10.1175/JHM-D-16-0027.1.10.1175/JHM-D-16-0027.1)| false
    • Search Google Scholar
    • Export Citation
  • Stan, C., and D. M. Straus, 2019: The impact of cloud representation on the sub-seasonal forecasts of atmospheric teleconnections and preferred circulation regimes in the Northern Hemisphere. Atmos.–Ocean, 57, 233–248, https://doi.org/10.1080/07055900.2019.1590178.

    • Crossref
    • Stan, C., and D. M. Straus, 2019: The impact of cloud representation on the sub-seasonal forecasts of atmospheric teleconnections and preferred circulation regimes in the Northern Hemisphere. Atmos.–Ocean, 57, 233–248, https://doi.org/10.1080/07055900.2019.1590178.10.1080/07055900.2019.1590178)| false
    • Search Google Scholar
    • Export Citation
  • Stephenson, S. R., and R. Pincus, 2018: Challenges of sea-ice prediction for Arctic marine policy and planning. J. Borderl. Stud., 33, 255–272, https://doi.org/10.1080/08865655.2017.1294494.

    • Crossref
    • Stephenson, S. R., and R. Pincus, 2018: Challenges of sea-ice prediction for Arctic marine policy and planning. J. Borderl. Stud., 33, 255–272, https://doi.org/10.1080/08865655.2017.1294494.10.1080/08865655.2017.1294494)| false
    • Search Google Scholar
    • Export Citation
  • Stone, K. A., S. Solomon, D. E. Kinnison, C. F. Baggett, and E. A. Barnes, 2019: Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geophys. Res. Atmos., 124, 5922–5933, https://doi.org/10.1029/2018JD029626.

    • Crossref
    • Stone, K. A., S. Solomon, D. E. Kinnison, C. F. Baggett, and E. A. Barnes, 2019: Prediction of Northern Hemisphere regional surface temperatures using stratospheric ozone information. J. Geophys. Res. Atmos., 124, 5922–5933, https://doi.org/10.1029/2018JD029626.10.1029/2018JD029626)| false
    • Search Google Scholar
    • Export Citation
  • Strazzo, S., D. C. Collins, A. Schepen, Q. J. Wang, E. Becker, and L. Jia, 2019: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation. Mon. Wea. Rev., 147, 607–625, https://doi.org/10.1175/MWR-D-18-0156.1.

    • Crossref
    • Strazzo, S., D. C. Collins, A. Schepen, Q. J. Wang, E. Becker, and L. Jia, 2019: Application of a hybrid statistical–dynamical system to seasonal prediction of North American temperature and precipitation. Mon. Wea. Rev., 147, 607–625, https://doi.org/10.1175/MWR-D-18-0156.1.10.1175/MWR-D-18-0156.1)| false
    • Search Google Scholar
    • Export Citation
  • Strommen, K., and T. N. Palmer, 2019: Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 145, 147–163, https://doi.org/10.1002/qj.3414.

    • Crossref
    • Strommen, K., and T. N. Palmer, 2019: Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 145, 147–163, https://doi.org/10.1002/qj.3414.10.1002/qj.3414)| false
    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., J. Mignot, P. Ortega, M. Khodri, M. Menegoz, C. Cassou, and V. Hanquiez, 2017: Impact of explosive volcanic eruptions on the main climate variability modes. Global Planet. Change, 150, 24–45, https://doi.org/10.1016/j.gloplacha.2017.01.006.

    • Crossref
    • Swingedouw, D., J. Mignot, P. Ortega, M. Khodri, M. Menegoz, C. Cassou, and V. Hanquiez, 2017: Impact of explosive volcanic eruptions on the main climate variability modes. Global Planet. Change, 150, 24–45, https://doi.org/10.1016/j.gloplacha.2017.01.006.10.1016/j.gloplacha.2017.01.006)| false
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2018: Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. J. Geophys. Res. Atmos., 123, 10 231–10 247, https://doi.org/10.1029/2018JD028755.

    • Crossref
    • Taguchi, M., 2018: Comparison of subseasonal-to-seasonal model forecasts for major stratospheric sudden warmings. J. Geophys. Res. Atmos., 123, 10 231–10 247, https://doi.org/10.1029/2018JD028755.10.1029/2018JD028755)| false
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and M. Watanabe, 2016: Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Climate Change, 6, 768–772, https://doi.org/10.1038/nclimate2996.

    • Crossref
    • Takahashi, C., and M. Watanabe, 2016: Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Climate Change, 6, 768–772, https://doi.org/10.1038/nclimate2996.10.1038/nclimate2996)| false
    • Search Google Scholar
    • Export Citation
  • Takaya, Y., 2019: Forecast system design, configuration, and complexity. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 93–117.

    • Crossref
    • Takaya, Y., 2019: Forecast system design, configuration, and complexity. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 93–117.10.1016/B978-0-12-811714-9.00012-7)| false
    • Search Google Scholar
    • Export Citation
  • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 4525–4545, https://doi.org/10.1175/JCLI-D-18-0823.1.

    • Crossref
    • Teng, H., G. Branstator, A. B. Tawfik, and P. Callaghan, 2019: Circumglobal response to prescribed soil moisture over North America. J. Climate, 32, 4525–4545, https://doi.org/10.1175/JCLI-D-18-0823.1.10.1175/JCLI-D-18-0823.1)| false
    • Search Google Scholar
    • Export Citation
  • Tommasi, D., and Coauthors, 2017: Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr., 152, 15–49, https://doi.org/10.1016/j.pocean.2016.12.011.

    • Crossref
    • Tommasi, D., and Coauthors, 2017: Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts. Prog. Oceanogr., 152, 15–49, https://doi.org/10.1016/j.pocean.2016.12.011.10.1016/j.pocean.2016.12.011)| false
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and Coauthors, 2017: The climate-system historical forecast project: Providing open access to seasonal forecast ensembles from centers around the globe. Bull. Amer. Meteor. Soc., 98, 2293–2301, https://doi.org/10.1175/BAMS-D-16-0209.1.

    • Crossref
    • Tompkins, A. M., and Coauthors, 2017: The climate-system historical forecast project: Providing open access to seasonal forecast ensembles from centers around the globe. Bull. Amer. Meteor. Soc., 98, 2293–2301, https://doi.org/10.1175/BAMS-D-16-0209.1.10.1175/BAMS-D-16-0209.1)| false
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., and S. Koseki, 2018: A methodology for anomaly coupling in climate simulation. J. Adv. Model. Earth Syst., 10, 2061–2079, https://doi.org/10.1029/2018MS001288.

    • Crossref
    • Toniazzo, T., and S. Koseki, 2018: A methodology for anomaly coupling in climate simulation. J. Adv. Model. Earth Syst., 10, 2061–2079, https://doi.org/10.1029/2018MS001288.10.1029/2018MS001288)| false
    • Search Google Scholar
    • Export Citation
  • Toure, A. M., R. H. Reichle, B. A. Forman, A. Getirana, and G. J. M. De Lannoy, 2018: Assimilation of MODIS snow cover fraction observations into the NASA Catchment Land Surface Model. Remote Sens ., 10, 316, https://doi.org/10.3390/rs10020316.

    • Crossref
    • Toure, A. M., R. H. Reichle, B. A. Forman, A. Getirana, and G. J. M. De Lannoy, 2018: Assimilation of MODIS snow cover fraction observations into the NASA Catchment Land Surface Model. Remote Sens., 10, 316, https://doi.org/10.3390/rs10020316.10.3390/rs10020316)| false
    • Search Google Scholar
    • Export Citation
  • Towler, E., D. PaiMazumder, and J. Done, 2018: Toward the application of decadal climate predictions. J. Appl. Meteor. Climatol., 57, 555–568, https://doi.org/10.1175/JAMC-D-17-0113.1.

    • Crossref
    • Towler, E., D. PaiMazumder, and J. Done, 2018: Toward the application of decadal climate predictions. J. Appl. Meteor. Climatol., 57, 555–568, https://doi.org/10.1175/JAMC-D-17-0113.1.10.1175/JAMC-D-17-0113.1)| false
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 987–1003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 987–1003, https://doi.org/10.1002/qj.2432.10.1002/qj.2432)| false
    • Search Google Scholar
    • Export Citation
  • Turco, M., R. Marcos-Matamorosa, X. Castro, E. Canyameras, and M. C. Llasat, 2019: Seasonal prediction of climate-driven fire risk for decision-making and operational applications in a Mediterranean region. Sci. Total Environ., 676, 577–583, https://doi.org/10.1016/j.scitotenv.2019.04.296.

    • Crossref
    • Turco, M., R. Marcos-Matamorosa, X. Castro, E. Canyameras, and M. C. Llasat, 2019: Seasonal prediction of climate-driven fire risk for decision-making and operational applications in a Mediterranean region. Sci. Total Environ., 676, 577–583, https://doi.org/10.1016/j.scitotenv.2019.04.296.10.1016/j.scitotenv.2019.04.296)| false
    • Search Google Scholar
    • Export Citation
  • Uotila, P., and Coauthors, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dyn ., 52, 1613–1650, https://doi.org/10.1007/s00382-018-4242-z.

    • Crossref
    • Uotila, P., and Coauthors, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dyn., 52, 1613–1650, https://doi.org/10.1007/s00382-018-4242-z.10.1007/s00382-018-4242-z)| false
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., A. Robertson, and M. Tippett, 2017: Multimodel ensembling of subseasonal precipitation forecasts over North America. Mon. Wea. Rev., 145, 3913–3928, https://doi.org/10.1175/MWR-D-17-0092.1.

    • Crossref
    • Vigaud, N., A. Robertson, and M. Tippett, 2017: Multimodel ensembling of subseasonal precipitation forecasts over North America. Mon. Wea. Rev., 145, 3913–3928, https://doi.org/10.1175/MWR-D-17-0092.1.10.1175/MWR-D-17-0092.1)| false
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 2210–2220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 2210–2220, https://doi.org/10.1002/qj.3079.10.1002/qj.3079)| false
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and M. Balmaseda, 2017: Impact of sea surface temperature biases on extended-range forecasts. ECMWF Tech. Memo. 830, 21 pp., www.ecmwf.int/sites/default/files/elibrary/2018/18659-impact-sea-surface-temperature-biases-extended-range-forecasts.pdf.

      Vitart, F., and M. Balmaseda, 2017: Impact of sea surface temperature biases on extended-range forecasts. ECMWF Tech. Memo. 830, 21 pp., www.ecmwf.int/sites/default/files/elibrary/2018/18659-impact-sea-surface-temperature-biases-extended-range-forecasts.pdf.)| false
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Crossref
    • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.10.1038/s41612-018-0013-0)| false
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2019: Introduction: Why Sub-seasonal to seasonal prediction (S2S)? Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 3–15.

    • Crossref
    • Vitart, F., and A. W. Robertson, 2019: Introduction: Why Sub-seasonal to seasonal prediction (S2S)? Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 3–15.10.1016/B978-0-12-811714-9.00001-2)| false
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1.10.1175/BAMS-D-16-0017.1)| false
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Role of wind stress in driving SST biases in the tropical Atlantic. Climate Dyn ., 53, 3481–3504, https://doi.org/10.1007/s00382-019-04717-0.

    • Crossref
    • Voldoire, A., and Coauthors, 2019: Role of wind stress in driving SST biases in the tropical Atlantic. Climate Dyn., 53, 3481–3504, https://doi.org/10.1007/s00382-019-04717-0.10.1007/s00382-019-04717-0)| false
    • Search Google Scholar
    • Export Citation
  • Volpi, D., V. Guemas, and F. J. Doblas-Reyes, 2017: Comparison of full field and anomaly initialisation for decadal climate prediction: Towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Climate Dyn ., 49, 1181–1195, https://doi.org/10.1007/s00382-016-3373-3.

    • Crossref
    • Volpi, D., V. Guemas, and F. J. Doblas-Reyes, 2017: Comparison of full field and anomaly initialisation for decadal climate prediction: Towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Climate Dyn., 49, 1181–1195, https://doi.org/10.1007/s00382-016-3373-3.10.1007/s00382-016-3373-3)| false
    • Search Google Scholar
    • Export Citation
  • Wang, H. L., S. D. Schubert, R. D. Koster, and Y. Chang, 2019: Phase locking of the boreal summer atmospheric response to dry land surface anomalies in the Northern Hemisphere. J. Climate, 32, 1081–1099, https://doi.org/10.1175/JCLI-D-18-0240.1.

    • Crossref
    • Wang, H. L., S. D. Schubert, R. D. Koster, and Y. Chang, 2019: Phase locking of the boreal summer atmospheric response to dry land surface anomalies in the Northern Hemisphere. J. Climate, 32, 1081–1099, https://doi.org/10.1175/JCLI-D-18-0240.1.10.1175/JCLI-D-18-0240.1)| false
    • Search Google Scholar
    • Export Citation
  • Wang, T., D. Guo, Y. Gao, H. Wang, F. Zheng, Y. Zhu, J. Miao, and Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dyn ., 51, 2433–2453, https://doi.org/10.1007/s00382-017-4021-2.

    • Crossref
    • Wang, T., D. Guo, Y. Gao, H. Wang, F. Zheng, Y. Zhu, J. Miao, and Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dyn., 51, 2433–2453, https://doi.org/10.1007/s00382-017-4021-2.10.1007/s00382-017-4021-2)| false
    • Search Google Scholar
    • Export Citation
  • Wei, J., and P. A. Dirmeyer, 2019: Sensitivity of land precipitation to surface evapotranspiration: A nonlocal perspective based on water vapor transport. Geophys. Res. Lett., 46, 12 588–12 597, https://doi.org/10.1029/2019GL085613.

    • Crossref
    • Wei, J., and P. A. Dirmeyer, 2019: Sensitivity of land precipitation to surface evapotranspiration: A nonlocal perspective based on water vapor transport. Geophys. Res. Lett., 46, 12 588–12 597, https://doi.org/10.1029/2019GL085613.10.1029/2019GL085613)| false
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and T. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 2013 1162, https://doi.org/10.1098/rsif.2013.1162.

    • Crossref
    • Weisheimer, A., and T. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 2013 1162, https://doi.org/10.1098/rsif.2013.1162.10.1098/rsif.2013.1162)| false
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., D. Decremer, D. MacLeod, C. O’Reilly, T. N. Stockdale, S. Johnson, and T. N. Palmer, 2019: How confident are predictability estimates of the winter North Atlantic Oscillation? Quart. J. Roy. Meteor. Soc., 145