• Alexander, S. P., and M. G. Shepherd, 2010: Planetary wave activity in the polar lower stratosphere. Atmos. Chem. Phys., 10, 707718, https://doi.org/10.5194/acp-10-707-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, and Y. Kawatani, 2008a: COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophys. Res. Lett., 35, L10808, https://doi.org/10.1029/2008GL033174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, Y. Kawatani, and M. Takahashi, 2008b: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115, https://doi.org/10.1029/2008JD010039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., A. R. Klekociuk, M. C. Pitts, A. J. McDonald, and A. Arevalo-Torres, 2011: The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition. J. Geophys. Res., 116, D06109, https://doi.org/10.1029/2010JD015184.

    • Search Google Scholar
    • Export Citation
  • Angling, M. J., S. Elvidge, and S. B. Healy, 2018: Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements. Atmos. Meas. Tech., 11, 22132224, https://doi.org/10.5194/amt-11-2213-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 10771103, https://doi.org/10.5194/amt-4-1077-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and T. Rieckh, 2018: Estimating observation and model error variances using multiple data sets. Atmos. Meas. Tech., 11, 42394260, https://doi.org/10.5194/amt-11-4239-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y.-H. Kuo, D. P. Baumhefner, R. M. Errico, and T. W. Bettge, 1985: Predictability of mesoscale atmospheric motions. Advances in Geophysics, Vol. 28, Academic Press, 159202, https://doi.org/10.1016/S0065-2687(08)60188-0.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., C. Rocken, and Y.-H. Kuo, 2000: Applications of COSMIC to meteorology and climate. Terr. Atmos. Oceanic Sci., 11, 115156, https://doi.org/10.3319/TAO.2000.11.1.115(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313334, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., and A. J. Hajj, 2013: Monitoring the width of the tropical belt with GPS radio occultation measurements. Geophys. Res. Lett., 40, 62366241, https://doi.org/10.1002/2013GL058203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., T. K. Meehan, G. A. Hajj, A. J. Mannucci, and G. Beyerle, 2003: Lower troposphere refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108, 4577, https://doi.org/10.1029/2002JD003216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012a: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, https://doi.org/10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., A. J. Mannucci, and E. R. Kursinski, 2012b: Improving GPS Radio occultation stratospheric refractivity retrievals for climate benchmarking. Geophys. Res. Lett., 39, L12701, https://doi.org/10.1029/2012GL051720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., and G. Deblonde, 2008: Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts. Mon. Wea. Rev., 136, 257275, https://doi.org/10.1175/2007MWR1951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., and S. Laroche, 2011: An evaluation of the expression of the atmospheric refractivity for GPS signals. J. Geophys. Res., 116, D11104, https://doi.org/10.1029/2010JD015214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., and S. Laroche, 2015: Estimation of the added value of the absolute calibration of GPS radio occultation data for numerical weather prediction. Mon. Wea. Rev., 143, 12591274, https://doi.org/10.1175/MWR-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aparicio, J. M., G. Deblonde, L. Garand, and S. Laroche, 2009: Signature of the atmospheric compressibility factor in COSMIC, CHAMP, and GRACE radio occultation data. J. Geophys. Res., 114, D16114, https://doi.org/10.1029/2008JD011156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Radnóti, S. Healy, and C. Cardinali, 2014: GNSS radio occultation constellation observing system experiments. Mon. Wea. Rev., 142, 555572, https://doi.org/10.1175/MWR-D-13-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Grunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., T. Neubert, S. Syndergaard, and J. K. Nielsen, 2011: Radio occultation bending angle anomalies during tropical cyclones. Atmos. Meas. Tech., 4, 10531060, https://doi.org/10.5194/amt-4-1053-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., W. J. Randel, S.-P. Ho, T. Neubert, and S. Syndergaard, 2012: Thermal structure of intense convective clouds derived from GPS radio occultations. Atmos. Chem. Phys., 12, 53095318, https://doi.org/10.5194/acp-12-5309-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., S.-P. Ho, W. J. Randel, T. Neubert, and S. Syndergaard, 2013: Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements. J. Geophys. Res. Atmos., 118, 52475259, https://doi.org/10.1002/jgrd.50448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biondi, R., A. K. Steiner, G. Kirchengast, and T. Rieckh, 2015: Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation. Atmos. Chem. Phys., 15, 51815193, https://doi.org/10.5194/acp-15-5181-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Recent widening of the tropical belt from global tropopause statistics: Sensitivities. J. Geophys. Res., 115, D23109, https://doi.org/10.1029/2010JD014664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blum, A., 2019: The Weather Machine: How We See into the Future. Vintage, 224 pp.

  • Bonafoni, S., R. Biondi, H. Brenot, and R. Anthes, 2019: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review. Atmos. Res., 230, 104 624, https://doi.org/10.1016/j.atmosres.2019.104624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Quart. J. Roy. Meteor. Soc., 140, 25462562, https://doi.org/10.1002/qj.2320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brahmanandam, P. S., Y. H. Chu, and J. Liu, 2010: Observations of equatorial Kelvin wave modes in the FORMOSAT-3/COSMIC GPS RO temperature profiles. Terr. Atmos. Ocean. Sci., 21, 829840, https://doi.org/10.3319/TAO.2010.01.06.01(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, L., and A. K. Steiner, 2017: A global perspective on atmospheric blocking using GPS radio occultation—One decade of observations. Atmos. Meas. Tech., 10, 47274745, https://doi.org/10.5194/amt-10-4727-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, L., A. K. Steiner, B. Scherllin-Pirscher, and M. W. Jury, 2016: Exploring atmospheric blocking with GPS radio occultation observations. Atmos. Chem. Phys., 16, 45934604, https://doi.org/10.5194/acp-16-4593-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250, https://doi.org/10.1002/qj.366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardinali, C., and S. Healy, 2014: Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics. Quart. J. Roy. Meteor. Soc., 140, 23152320, https://doi.org/10.1002/qj.2300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, B. A., K. Zhang, R. Norman, V. V. Kumar, and S. Kumar, 2013: On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements. J. Geophys. Res. Space Phys., 118, 892904, https://doi.org/10.1002/jgra.50089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chau, J. L., L. P. Goncharenko, B. G. Fejer, and H.-L. Liu, 2012: Equatorial and low latitude ionospheric effects during sudden stratospheric warming events. Space Sci. Rev., 168, 385417, https://doi.org/10.1007/s11214-011-9797-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., T.-K. Wee, Y. H. Kuo, and D. H. Bromwich, 2014: An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the Southern Ocean. Mon. Wea. Rev., 142, 41874206, https://doi.org/10.1175/MWR-D-14-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. M., and Coauthors, 2018: The impact of radio occultation observations on the simulation of Hurricane Karl (2010). Mon. Wea. Rev., 146, 329350, https://doi.org/10.1175/MWR-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C., M. E. Hsieh, L. F. Hsiao, Y.-H. Kuo, M. J. Yang, C.-Y. Huang, and C. S. Lee, 2015: Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010. Atmos. Meas. Tech., 8, 25312542, https://doi.org/10.5194/amt-8-2531-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collard, A., and S. B. Healy, 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather prediction analysis fields: A simulation study. Quart. J. Roy. Meteor. Soc., 129, 27412760, https://doi.org/10.1256/qj.02.124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767, https://doi.org/10.1175/2009WAF2222302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 1428, https://doi.org/10.1029/2012JD017782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 2032, https://doi.org/10.1175/JTECH-D-13-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N. A., and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. J. Geophys. Res. Atmos., 118, 77737787, https://doi.org/10.1002/jgrd.50610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and Coauthors, 2017: Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys., 17, 12 74312 778, https://doi.org/10.5194/acp-17-12743-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, https://doi.org/10.1256/qj.05.137.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. ECMWF Tech. Memo. 199, 34 pp., www.ecmwf.int/node/9331.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., 2016: Observation bias correction schemes in data assimilation systems: A theoretical study of some of their properties. Quart. J. Roy. Meteor. Soc., 142, 22842291, https://doi.org/10.1002/qj.2819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faber, A., P. Llamedo, T. Schmidt, A. de la Torre, and J. Wickert, 2013: On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech., 6, 31693180, https://doi.org/10.5194/amt-6-3169-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, https://doi.org/10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and Coauthors, 2008: Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. J. Geophys. Res., 113, D22110, https://doi.org/10.1029/2008JD010000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flannaghan, T. J., and S. Fueglistaler, 2013: The importance of the tropical tropopause layer for equatorial Kelvin wave propagation. J. Geophys. Res. Atmos., 118, 51605175, https://doi.org/10.1002/jgrd.50418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., B. Pirscher, M. Borsche, G. Kirchengast, and J. Wickert, 2009: Assessing the climate monitoring utility of radio occultation data: From CHAMP to FORMOSAT-3/COSMIC. Terr. Atmos. Ocean. Sci., 20, 155170, https://doi.org/10.3319/TAO.2008.01.14.01(F3C).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, L. C., R. W. Schunk, L. Scherliess, J. J. Sojka, and L. Zhu, 2014: Global assimilation of ionospheric measurements-Gauss Markov model: Improved specifications with multiple data types. Space Wea ., 12, 675688, https://doi.org/10.1002/2014SW001104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 31893206, https://doi.org/10.1002/qj.3172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilpin, S., R. Anthes, and S. Sokolovskiy, 2019: Sensitivity of forward-modeled bending angles to vertical interpolation of refractivity for radio occultation data assimilation. Mon. Wea. Rev., 147, 269289, https://doi.org/10.1175/MWR-D-18-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R., J. Anderson, and G. North, 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc., 79, 25412549, https://doi.org/10.1175/1520-0477(1998)079<2541:TCMAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292, https://doi.org/10.1175/2009JCLI3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, P., Y.-H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, https://doi.org/10.1175/2011JAS3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, J. S., B. J. Murphy, P. Muradyan, F. Nievinski, K. M. Larson, J. L. Garrison, and K.-N. Wang, 2014: First results from an airborne GPS radio occultation system for atmospheric profiling. Geophys. Res. Lett, 41, 17591765, https://doi.org/10.1002/2013GL058681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, D06109, https://doi.org/10.1029/2003JD003909.

    • Search Google Scholar
    • Export Citation
  • He, W., S.-P. Ho, H. Chen, X. Zhou, D. Hunt, and Y. Kuo, 2009: Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett., 36, L17807, https://doi.org/10.1029/2009GL038712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, 111118, https://doi.org/10.1002/asl.169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2013: Surface pressure information retrieved from GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 139, 21082118, https://doi.org/10.1002/qj.2090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., 2014: Implementation of the ROPP two-dimensional bending angle observation operator in an NWP system. EUMETSAT Radio Occultation Meteorology Satellite Application Facility Rep. 19, 33 pp., www.romsaf.org/general-documents/rsr/rsr_19.pdf.

    • Search Google Scholar
    • Export Citation
  • Healy, S. B., and J. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623, https://doi.org/10.1256/qj.04.182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Healy, S. B., J. R. Eyre, M. Hamrun, and J. N. Thépaut, 2007: Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators. Quart. J. Roy. Meteor. Soc., 133, 12131227, https://doi.org/10.1002/qj.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Pajares, M., J. M. Juan, and J. Sanz, 2000: Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys. Res. Lett., 27, 24732476, https://doi.org/10.1029/2000GL000032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ECMWF ERA Rep. 27, 63 pp., www.ecmwf.int/en/elibrary/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp.

    • Search Google Scholar
    • Export Citation
  • Hindley, N. P., C. J. Wright, N. D. Smith, and N. J. Mitchell, 2015: The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys., 15, 77977818, https://doi.org/10.5194/acp-15-7797-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., Y. H. Kuo, Z. Zeng, and T. C. Peterson, 2007: A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data. Geophys. Res. Lett., 34, L15701, https://doi.org/10.1029/2007GL030202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., M. Goldberg, Y.-H. Kuo, C.-Z. Zou, and W. Schreiner, 2009a: Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results. Terr. Atmos. Ocean. Sci., 20, 87, https://doi.org/10.3319/TAO.2007.12.06.01(F3C).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2009b: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers. J. Geophys. Res., 114, D23107, https://doi.org/10.1029/2009JD011969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., Y.-H. Kuo, W. Schreiner, and X. Zho, 2010a: Using SI-traceable global positioning system radio occultation measurements for climate monitoring [in “State of the Climate in 2009”]. Bull. Amer. Meteor. Soc., 91 (7), S36S37, https://doi.org/10.1175/BAMS-91-7-StateoftheClimate.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., X. Zhou, Y.-H. Kuo, D. Hunt, and J.-H. Wang, 2010b: Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens ., 2, 13201330, https://doi.org/10.3390/rs2051320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., and Coauthors, 2012: Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res., 117, D18111, https://doi.org/10.1029/2012JD017665.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., X. Yue, Z. Zeng, C. Ao, C.-Y. Huang, E. R. Kursinski, and Y.-H. Kuo, 2014: Applications of COSMIC radio occultation data from the troposphere to ionosphere and potential impacts of COSMIC-2 data. Bull. Amer. Meteor. Soc., 95, ES18ES22, https://doi.org/10.1175/BAMS-D-13-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., L. Peng, R. A. Anthes, Y.-H. Kuo, and H.-C. Lin 2015: Marine boundary layer heights and their longitudinal, diurnal, and interseasonal variability in the southeastern Pacific using COSMIC, CALIOP, and radiosonde data. J. Climate, 28, 28562872, https://doi.org/10.1175/JCLI-D-14-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., L. Peng, and H. Voemel, 2017: Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and MetOp-A/GRAS data from 2006 to 2014. Atmos. Chem. Phys., 17, 44934511, https://doi.org/10.5194/acp-17-4493-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., L. Peng, C. Mears, and R. Anthes, 2018: Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013. Atmos. Chem. Phys., 18, 259274, https://doi.org/10.5194/acp-18-259-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., R. A. Anthes, H. Zhang, S. Chen, 2019: Improving the impact of radio occultation observations on numerical forecasts of tropical cyclones. JCSDA Quarterly Newsletter, No. 62, Joint Center for Satellite Data Assimilation, Boulder, CO, 11–17.

  • Huang, C.-Y., Y.-H. Kuo, and S.-H. Chen, 2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931953, https://doi.org/10.1175/WAF874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.-Y., W.-H. Teng, S.-P. Ho, and Y. H. Kuo, 2013: Global variation of COSMIC precipitable water over land: Comparisons with ground-based GPS measurements and NCEP reanalyses. Geophys. Res. Lett., 40, 53275331, https://doi.org/10.1002/GRL.50885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, H., and Coauthors, 2011: Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res., 116, A01316, https://doi.org/10.1029/2010JA015925.

    • Search Google Scholar
    • Export Citation
  • Jin, H., Y. Miyoshi, D. Pancheva, P. Mukhtarov, H. Fujiwara, and H. Shinagawa, 2012: Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations. J. Geophys. Res., 117, A10323, https://doi.org/10.1029/2012JA017650.

    • Search Google Scholar
    • Export Citation
  • John, V. O., and B. J. Soden, 2007: Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys. Res. Lett., 34, L18704, https://doi.org/10.1029/2007GL030429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khaykin, S. M., A. Hauchecorne, N. Mzé, and P. Keckhut, 2015: Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys. Res. Lett., 42, 12511258, https://doi.org/10.1002/2014GL062891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation mea-surements. J. Climate, 25, 53435360, https://doi.org/10.1175/JCLI-D-11-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., W. J. Randel, and T. Birner, 2018: Convectively driven tropopause-level cooling and its influences on stratospheric moisture. J. Geophys. Res. Atmos., 123, 590606, https://doi.org/10.1002/2017JD027080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J. E., and M. J. Alexander, 2015: Direct impacts of waves on tropical cold point tropopause temperature. Geophys. Res. Lett., 42, 15841592, https://doi.org/10.1002/2014GL062737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen, and C.-J. Wang, 2009: Impact of GPS radio occultation refractivity soundings on a simulation of Typhoon Bilis (2006) upon landfall. Terr. Atmos. Ocean. Sci., 20, 115131, https://doi.org/10.3319/TAO.2008.01.21.03(F3C).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, https://doi.org/10.2151/jmsj.2004.507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., H. Liu, Y.-R. Guo, C.-T. Terng, and Y.-T. Lin, 2009: Impact of FORMOSAT-3/COSMIC data on typhoon and mei-yu prediction. Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific Region, K.-N. Liou and M. D. Chou, Eds., World Scientific, 458–483.

    • Crossref
    • Export Citation
  • Kuo, Y.-H., S. Y. Chen, and T. J. Galarneau Jr., 2016: Impact of GPS radio occultation data on the prediction of tropical cyclogenesis. 30th Conf. on Hydrology, New Orleans, LA, Amer. Meteor. Soc., J19.1, https://ams.confex.com/ams/96Annual/webprogram/Paper277532.html.

  • Kursinski, E. R., and T. Gebhardt, 2014: A method to deconvolve errors in GPS RO-derived water vapor histograms. J. Atmos. Oceanic Technol., 31, 26062628, https://doi.org/10.1175/JTECH-D-13-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Ocean. Sci., 11, 53114, https://doi.org/10.3319/TAO.2000.11.1.53(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackner, B. C., A. K. Steiner, G. Kirchengast, and G. C. Hegerl, 2011: Atmospheric climate change detection by radio occultation data using a fingerprinting method. J. Climate, 24, 52755291, https://doi.org/10.1175/2011JCLI3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladstädter, F., A. K. Steiner, U. Foelsche, L. Haimberger, C. Tavolato, and G. Kirchengast, 2011: An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation. Atmos. Meas. Tech., 4, 19651977, https://doi.org/10.5194/amt-4-1965-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladstädter, F., A. K. Steiner, M. Schwärz, and G. Kirchengast, 2015: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos. Meas. Tech., 8, 18191834, https://doi.org/10.5194/amt-8-1819-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I. T., W. Wang, J. Y. Liu, C. Y. Chen, and C. H. Lin, 2011: The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum. J. Geophys. Res., 116, A06311, https://doi.org/10.1029/2010JA015544.

    • Search Google Scholar
    • Export Citation
  • Lewis, H. W., 2009: A robust method for tropopause altitude identification using GPS radio occultation data. Geophys. Res. Lett., 36, L12808, https://doi.org/10.1029/2009GL039231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C. H., J. T. Lin, L. C. Chang, J. Y. Liu, C. H. Chen, W. H. Chen, H. H. Huang, and C. H. Liu, 2012: Observation of global ionospheric responses to the 2009 stratosphere sudden warming event by FORMOSAT-3/COSMIC. J. Geophys. Res., 117, A06323, https://doi.org/10.1029/2011JA017230.

    • Search Google Scholar
    • Export Citation
  • Lin, C. H., J. T. Lin, L. C. Chang, W. H. Chen, C. H. Chen, and J. Y. Liu, 2013: Stratospheric sudden warming effects on the ionospheric migrating tides during 2008–2010 observed by FORMOSAT-3/COSMIC. J. Atmos. Sol.-Terr. Phys., 103, 6675, https://doi.org/10.1016/j.jastp.2013.03.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., T. Matsuo, J. Y. Liu, C. H. Lin, H. F. Tsai, and E. A. Araujo-Pradere, 2015: Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance. Atmos. Meas. Tech., 8, 171182, https://doi.org/10.5194/amt-8-171-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. T., C. H. Lin, L. C. Chang, H. H. Huang, J. Y. Liu, A. B. Chen, C. H. Chen, and C. H. Liu, 2012: Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming. Geophys. Res. Lett., 39, L02101, https://doi.org/10.1029/2011GL050248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., J. Anderson, and Y.-H. Kuo, 2012: Improved analyses and forecasts of Hurricane Ernesto’s genesis using radio occultation data in an ensemble filter assimilation system. Mon. Wea. Rev., 140, 151166, https://doi.org/10.1175/MWR-D-11-00024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Y.-H. Kuo, S. Sokolovskiy, X. Zou, Z. Zeng, L.-F. Hsiao, and B.C. Ruston, 2018: A quality control procedure based on bending angle measurement uncertainty for radio occultation data assimilation in the tropical lower troposphere. J. Atmos. Oceanic Technol., 35, 21172131, https://doi.org/10.1175/JTECH-D-17-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H. L., and Coauthors, 2018: Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X2.0). J. Adv. Model. Earth Syst., 10, 381402, https://doi.org/10.1002/2017MS001232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lomidze, L., and L. Scherliess, 2015: Estimation of thermospheric zonal and meridional winds using a Kalman filter technique. Space Wea ., 13, 747760, https://doi.org/10.1002/2015SW001250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 59314 629, https://doi.org/10.5194/acp-17-14593-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luna, D., P. Alexander, and A. de la Torre, 2013: Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements. Adv. Space Res., 52, 879882, https://doi.org/10.1016/j.asr.2013.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., Y.-H. Kuo, B. Wang, W.-S. Wu, and S. Sokolovskiy, 2009: Comparison of local and nonlocal observation operators for the assimilation of GPS RO data with the NCEP GSI system: An OSSE study. Mon. Wea. Rev., 137, 35753587, https://doi.org/10.1175/2009MWR2809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mannucci, A. J., C. O. Ao, X. Pi, and B. A. Iijima, 2011: The impact of large scale ionospheric structure on radio occultation retrievals. Atmos. Meas. Tech., 4, 28372850, https://doi.org/10.5194/amt-4-2837-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., I.-T. Lee, and J. L. Anderson, 2013: Thermospheric mass density specification using an ensemble Kalman filter. J. Geophys. Res. Space Phys., 118, 13391350, https://doi.org/10.1002/jgra.50162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., 2012: Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations. J. Geophys. Res., 117, D15106, https://doi.org/10.1029/2011JD016715.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957, https://doi.org/10.1256/qj.04.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C., S. P. Ho, J. Wang, H. Huelsing, and L. Peng, 2017: Total column water vapor [in “States of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S24S25, https://doi.org/10.1175/2017BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Melbourne, W. G., and Coauthors, 1994: The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publ. 94–18, NASA Jet Propulsion Laboratory, Pasadena, CA, 147 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960008694.pdf.

  • Ming, F. C., C. Ibrahim, C. Barthe, S. Jolivet, P. Keckhut, Y. A. Liou, and Y. Kuleshov, 2014: Observations and a numerical study of gravity waves during tropical cyclone Ivan (2008). Atmos. Chem. Phys., 14, 641658, https://doi.org/10.5194/acp-14-641-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, B. J., J. S. Haase, P. Muradyan, J. L. Garrison, and K.-N. Wang, 2015: Airborne GPS radio occultation refractivity profiles observed in tropical storm environments. J. Geophys. Res. Atmos., 120, 16901709, https://doi.org/10.1002/2014JD022931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., T. Oakley, H. Vömel, and L. Wei, 2011: WMO intercomparison of high quality radiosonde systems. Instruments and Observing Methods Rep. 107, 238 pp., WMO/TD-1580.

  • Nath, D., W. Chen, and A. Guharay, 2015: Climatology of stratospheric gravity waves and their interaction with zonal mean wind over the tropics using GPS RO and ground-based measurements in the two phases of QBO. Theor. Appl. Climatol., 119, 757769, https://doi.org/10.1007/s00704-014-1146-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008:Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrieval. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolls, M. J., F. S. Rodrigues, G. S. Bust, and J. L. Chau, 2009: Estimating E region density profiles from radio occultation measurements assisted by IDA4D. J. Geophys. Res., 114, A10316, https://doi.org/10.1029/2009JA014399.

    • Search Google Scholar
    • Export Citation
  • Noël, S., M. Buchwitz, and J. P. Burrows, 2004: First retrieval of global water vapour column amounts from SCIAMACHY measurements. Atmos. Chem. Phys., 4, 111125, https://doi.org/10.5194/acp-4-111-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohring, G., Ed., 2007: Achieving Satellite Instrument Calibration for Climate Change (ASIC3). Workshop Rep., NOAA, Camp Springs, MD, 144 pp., www.star.nesdis.noaa.gov/star/documents/ASIC3-071218-webversfinal.pdf.

  • Oyama, K.-I., J. T. Jhou, J. T. Lin, C. Lin, H. Liu, and K. Yumoto, 2014: Ionospheric response to 2009 sudden stratospheric warming in the Northern Hemisphere. J. Geophys. Res. Space Phys., 119, 10 26010 275, https://doi.org/10.1002/2014JA020014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C. J., U. Das, S. S. Yang, C. J. Wong, and H. C. Lai, 2011: Investigation of Kelvin waves in the stratosphere using FORMOSAT-3/COSMIC temperature data. J. Meteor. Soc. Japan, 89A, 8396, https://doi.org/10.2151/jmsj.2011-A05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedatella, N. M., and A. Maute, 2015: Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. J. Geophys. Res. Space Phys., 120, 10 74010 753, https://doi.org/10.1002/2015JA021986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedatella, N. M., H.-L. Liu, F. Sassi, J. Lei, J. L. Chau, and X. Zhang, 2014: Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability. J. Geophys. Res. Space Phys., 119, 38283843, https://doi.org/10.1002/2014JA019849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedatella, N. M., X. Yue, and W. S. Schreiner, 2015: An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles. J. Geophys. Res. Space Phys., 120, 89428953, https://doi.org/10.1002/2015JA021704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirscher, B., U. Foelsche, M. Borsche, G. Kirchengast, and Y.-H. Kuo, 2010: Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data. J. Geophys. Res., 115, D14108, https://doi.org/10.1029/2009JD013008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., P. Moll, D. Puech, F. Rabier, and S. B. Healy, 2009: Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr. Atmos. Ocean. Sci., 20, 101113, https://doi.org/10.3319/TAO.2008.01.21.02(F3C).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of global positioning system radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 19721990, https://doi.org/10.1002/qj.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, https://doi.org/10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2010: The polar summer tropopause inversion layer. J. Atmos. Sci., 67, 25722581, https://doi.org/10.1175/2010JAS3430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2015: Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci., 72, 12611275, https://doi.org/10.1175/JAS-D-14-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and W. Rivera Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, https://doi.org/10.1029/2002JD002595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007a: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, https://doi.org/10.1029/2006JD007904.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and P. Forster, 2007b: The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism. J. Atmos. Sci., 64, 44894496, https://doi.org/10.1175/2007JAS2412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131, https://doi.org/10.1002/qj.521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche, 2014: Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos. Meas. Tech., 7, 39473958, https://doi.org/10.5194/amt-7-3947-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., R. A. Anthes, W. Randel, S.-P. Ho, and U. Foelsche, 2017: Tropospheric dry layers in the tropical western Pacific: Comparisons of GPS radio occultation with multiple data sets. Atmos. Meas. Tech., 10, 10931110, https://doi.org/10.5194/amt-10-1093-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieckh, T., R. A. Anthes, W. Randel, S.-P. Ho, and U. Foelsche, 2018: Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series. Atmos. Meas. Tech., 11, 30913109, https://doi.org/10.5194/amt-11-3091-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003:Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res., 108, 4002, https://doi.org/10.1029/2002JD002258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., C. Deser, S.-P. Ho, C. Chou, W. Randel, and Y. H. Kuo, 2012: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett., 39, L20801, https://doi.org/10.1029/2012GL053071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., S. Syndergaard, U. Foelsche, and K. B. Lauritsen, 2015: Generation of a bending angle radio occultation climatology (BAROCLIM) and its use in radio occultation retrievals. Atmos. Meas. Tech., 8, 109124, https://doi.org/10.5194/amt-8-109-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., W. J. Randel, and J. Kim, 2017: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements. Atmos. Chem. Phys., 17, 793806, https://doi.org/10.5194/acp-17-793-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schluessel, P., and W. J. Emery, 1990: Atmospheric water vapour over oceans from SSM/I measurements. Int. J. Remote Sens., 11, 753766, https://doi.org/10.1080/01431169008955055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmos. Chem. Phys., 5, 14731488, https://doi.org/10.5194/acp-5-1473-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., G. Beyerle, S. Heise, J. Wickert and M. Rothacher, 2006: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophys. Res. Lett., 33, L04808, https://doi.org/10.1029/2005GL024600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J. Wickert, G. Beyerle, and S. Heise, 2008: Global tropopause height trends estimated from GPS radio occultation data. Geophys. Res. Lett., 35, L11806, https://doi.org/10.1029/2008GL034012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J.-P. Cammas, H. G. J. Smit, S. Heise, J. Wickert, and A. Haser 2010: Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data. J. Geophys. Res., 115, D24304, https://doi.org/10.1029/2010JD014284.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., P. Alexander, and A. de la Torre, 2016: Stratospheric gravity wave momentum flux from radio occultation. J. Geophys. Res. Atmos., 121, 44434467, https://doi.org/10.1002/2015JD024135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W. S., 2019: COSMIC and RO missions of opportunity. JCSDA Quarterly Newsletter, No. 62, 16.

  • Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, and D. C. Hunt, 1999: Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci ., 34, 949966, https://doi.org/10.1029/1999RS900034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W. S., S. V. Sokolovskiy, D. Hunt, C. Rocken, and Y.-H. Kuo 2011: Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and MetOp/GRAS missions at CDAAC. Atmos. Meas. Tech., 4, 22552272, https://doi.org/10.5194/amt-4-2255-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, M., and Coauthors, 2017: GEWEX water vapor assessment (G-VAP). World Climate Research Programme Rep. 16/2017, 216 pp.

  • Schunk, R. W., and Coauthors, 2016: Space weather forecasting with a multimodel ensemble prediction system (MEPS). Radio Sci ., 51, 11571165, https://doi.org/10.1002/2015RS005888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., N. P. Gillett, J. R. Lanzante, K. P. Shine, and P. W. Thorne, 2011: Stratospheric temperature trends: Our evolving understanding. Wiley Interdiscip. Rev.: Climate Change, 2, 592616, https://doi.org/10.1002/WCC.125.

    • Search Google Scholar
    • Export Citation
  • Seif, A., J.-Y. Liu, A. J. Mannucci, B. A. Carter, R. Norman, R. G. Caton, and R. T. Tsunoda, 2017: A study of daytime L-band scintillation in association with sporadic E along the magnetic dip equator. Radio Sci ., 70, 360368, https://doi.org/10.1002/2017RS006393.

    • Search Google Scholar
    • Export Citation
  • Sheng, C., Y. Deng, X. Yue, and Y. Huang, 2014: Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations. J. Atmos. Sol.-Terr. Phys., 115–116, 7986, https://doi.org/10.1016/j.jastp.2013.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, M. G., and T. Tsuda, 2008: Large-scale planetary disturbances in stratospheric temperature at high-latitudes in the southern summer hemisphere. Atmos. Chem. Phys., 8, 75577570, https://doi.org/10.5194/acp-8-7557-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., P. Poli, D. P. Dee, P. Berrisford, H. Hersbach, S. Kobayashi, and C. Peubey, 2014: Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Quart. J. Roy. Meteor. Soc., 140, 329353, https://doi.org/10.1002/qj.2317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci ., 38, 1058, https://doi.org/10.1029/2002RS002728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., Y. H. Kuo, and W. Wang, 2005: Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. Mon. Wea. Rev., 133, 22002212, https://doi.org/10.1175/MWR2948.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., Y. H. Kuo, C. Rocken, W. S. Schreiner, D. Hunt, and R. A. Anthes, 2006: Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett., 33, L12813, https://doi.org/10.1029/2006GL025955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., D. Lenschow, C. Rocken, W. Schreiner, D. Hunt, Y.-H. Kuo, and R. Anthes, 2010a: Variability of the boundary layer depth over certain regions of the subtropical ocean from 3 years of COSMIC data. 14th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, Atlanta, GA, Amer. Meteor. Soc., 534, https://ams.confex.com/ams/90annual/techprogram/paper_165488.htm.

  • Sokolovskiy, S., C. Rocken, W. Schreinner, and D. Hunt, 2010b: On the uncertainty of radio occultation inversions in the lower troposphere. J. Geophys. Res., 115, D22111, https://doi.org/10.1029/2010JD014058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., W. Schreiner, Z. Zeng, D. Hunt, Y.-C. Lin, and Y.-H. Kuo, 2014: Observation, analysis, and modeling of deep radio occultation signals: Effects of tropospheric ducts and interfering signals. Radio Sci ., 49, 954970, https://doi.org/10.1002/2014RS005436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and G. Kirchengast, 2005: Error analysis for GNSS radio occultation data based on ensembles of profiles from end-to-end simulations. J. Geophys. Res., 110, D15307, https://doi.org/10.1029/2004JD005251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., G. Kirchengast, M. Borsche, U. Foelsche, and T. Schoengassner, 2007: A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J. Geophys. Res., 112, D22110, https://doi.org/10.1029/2006JD008283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., B. C. Lackner, F. Ladstädter, B. Scherllin-Pirscher, U. Foelsche, and G. Kirchengast, 2011: GPS radio occultation for climate monitoring and change detection. Radio Sci ., 46, RS0D24, https://doi.org/10.1029/2010RS004614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., and Coauthors, 2013: Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos. Chem. Phys., 13, 14691484, https://doi.org/10.5194/acp-13-1469-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, A. K., B. C. Lackner, and M. A. Ringer, 2018: Tropical convection regimes in climate models: Evaluation with satellite observations. Atmos. Chem. Phys., 18, 46574672, https://doi.org/10.5194/acp-18-4657-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, D. J. Seidel, and D. C. Hunt, 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, https://doi.org/10.1029/2010JD014457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, S. Schroeder, D. J. Seidel, and B. Ballish, 2013: Toward improved corrections for radiation-induced biases in radiosonde temperature observations. J. Geophys. Res. Atmos., 118, 42314243, https://doi.org/10.1002/jgrd.50369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syndergaard, S., 2000: On the ionosphere calibration in GPS radio occultation measurements. Radio Sci ., 35, 865883, https://doi.org/10.1029/1999RS002199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, W.-H., C. Y. Huang, S.-P. Ho, Y. H. Kuo, and X. J. Zhou, 2013: Characteristics of global precipitable water in ENSO events revealed by COSMIC measurements. J. Geophys. Res. Atmos., 118, 115, https://doi.org/10.1002/jgrd.50371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thayer, J. P., J. F. Vickrey, R. A. Heelis, and J. B. Gary, 1995: Interpretation and modeling of the high-latitude electromagnetic energy flux. J. Geophys. Res., 100, 19 71519 728, https://doi.org/10.1029/95JA01159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and Coauthors, 2011: A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes. J. Geophys. Res., 116, D12116, https://doi.org/10.1029/2010JD015487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., C. O. Ao, D. E. Waliser, E. J. Fetzer, A. J. Mannucci, and J. Teixeira, 2012: Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements. J. Geophys. Res., 117 ,D15110, https://doi.org/10.1029/2012JD017715.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., 2014: Characteristics of atmospheric gravity waves observed using the MU (middle and upper atmosphere) radar and GPS (global positioning system) radio occultation. Proc. Japan Acad., 90B, 1227, https://doi.org/10.2183/pjab.90.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulasi Ram, S., J. Lei, S.-Y. Su, C. H. Liu, C. H. Lin, and W. S. Chen, 2010a: Dayside ionospheric response to recurrent geomagnetic activity during the extreme solar minimum of 2008. Geophys. Res. Lett., 37, L02101, https://doi.org/10.1029/2009GL041038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulasi Ram, S., C. H. Liu, and S.-Y. Su, 2010b: Periodic solar wind forcing due to recurrent coronal holes during 1996–2009 and its impact on Earth’s geomagnetic and ionospheric properties during the extreme solar minimum. J. Geophys. Res., 115, A12340, https://doi.org/10.1029/2010JA015800.

    • Search Google Scholar
    • Export Citation
  • Tulasi Ram, S., S.-Y. Su, L.-C. Tsai, and C. H. Liu, 2016: A self-contained GIM-aided Abel retrieval method to improve GNSS-radio occultation retrieved electron density profiles. GPS Solutions, 20, 825836, https://doi.org/10.1007/s10291-015-0491-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergados, P., A. J. Mannucci, and H. Su, 2013: A validation study for GPS radio occultation data with moist thermodynamic structure of tropical cyclones. J. Geophys. Res. Atmos., 118, 94019413, https://doi.org/10.1002/jgrd.50698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergados, P., Z. J. Luo, K. Emanuel, and A. J. Mannucci, 2014: Observational tests of hurricane intensity estimations using GPS radio occultations. J. Geophys. Res. Atmos., 119, 19361948, https://doi.org/10.1002/2013JD020934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, https://doi.org/10.1175/JAS-D-13-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Engeln, A., S. Healy, C. Marquardt, Y. Andres, and F. Sancho, 2009: Validation of operational GRAS radio occultation data. Geophys. Res. Lett., 36, L17809, https://doi.org/10.1029/2009GL039968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and M. J. Alexander, 2010: Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res., 115, D21122, https://doi.org/10.1029/2010JD013860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ware, R., and Coauthors, 1996: GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 1940, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wee, T.-K., and Y.-H. Kuo, 2014: A perspective on the fundamental quality of GPS radio occultation data. Atmos. Meas. Tech. Discuss., 7, 94819508, https://doi.org/10.5194/amtd-7-9481-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2015: A 17-year climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Climate, 28, 68826902, https://doi.org/10.1175/JCLI-D-15-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627, https://doi.org/10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., Y.-H. Kuo, F. M. Ralph, T.-K. Wee, P. J. Neiman, and Z. Ma, 2008: Intercomparison of integrated water vapor retrievals from SSM/I and COSMIC. Geophys. Res. Lett., 28, 32633266, https://doi.org/10.1029/2008GL035126.

    • Search Google Scholar
    • Export Citation
  • Wilhelmsen, H., F. Ladstädter, B. Scherllin-Pirscher, and A. K. Steiner, 2018: Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements. Atmos. Meas. Tech., 11, 13331346, https://doi.org/10.5194/amt-11-1333-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D. L., 2018: New global electron density observations from GPS-RO in the D- and E-region ionosphere. J. Atmos. Sol.-Terr. Phys., 171, 3659, https://doi.org/10.1016/j.jastp.2017.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., S. Syndergaard, E. R. Kursinski, and B. Herman, 2006: An approach for retrieving marine boundary layer refractivity from GPS occultation data in the presence of superrefraction. J. Atmos. Oceanic Technol., 23, 16291644, https://doi.org/10.1175/JTECH1996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, and A. J. Mannucci, 2010a: Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmos. Chem. Phys., 10, 68896899, https://doi.org/10.5194/acp-10-6889-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, A. J. Mannucci, and S. Syndergaard, 2010b: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. L. Wu, C. O. Ao, A. J. Mannucci, and E. R. Kursinski, 2012: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys., 12, 903918, https://doi.org/10.5194/acp-12-903-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen, 2014: Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 41394163, https://doi.org/10.1175/MWR-D-13-00275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., W. S. Schreiner, J. Lei, C. Rocken, D. C. Hunt, Y.-H. Kuo, and W. Wan, 2010a: Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res., 115, A00G09, https://doi.org/10.1029/2010JA015466.

    • Search Google Scholar
    • Export Citation
  • Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, and Y.-H. Kuo, 2010b: Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys., 28, 217222, https://doi.org/10.5194/angeo-28-217-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., W. S. Schreiner, Y.-C. Lin, C. Rocken, Y.-H. Kuo, and B. Zhao, 2011: Data assimilation retrieval of electron density profiles from radio occultation measurements. J. Geophys. Res., 116, A03317, https://doi.org/10.1029/2010JA015980.

    • Search Google Scholar
    • Export Citation
  • Yue, X., and Coauthors, 2012: Global 3-D ionospheric electron density reanalysis based on multisource data assimilation. J. Geophys. Res., 117, A09325, https://doi.org/10.1029/2012JA017968.

    • Search Google Scholar
    • Export Citation
  • Yue, X., W. S. Schreiner, and Y.-H. Kuo, 2013: Evaluating the effect of the global ionospheric map on aiding retrieval of radio occultation electron density profiles. GPS Solutions, 17, 327335, https://doi.org/10.1007/s10291-012-0281-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., W. S. Schreiner, N. Pedatella, R. A. Anthes, A. J. Mannucci, P. R. Straus, and J.-Y. Liu, 2014: Space weather observations by GNSS radio occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Wea ., 12, 616621, https://doi.org/10.1002/2014SW001133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, X., W. S. Schreiner, N. Pedatella, and Y.-H. Kuo, 2016: Characterizing GPS radio occultation loss of lock due to ionospheric weather. Space Wea ., 14, 285299, https://doi.org/10.1002/2015SW001340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yunck, T. P., C.-H. Liu, and R. Ware, 2000:A history of GPS sounding. Terr. Atmos. Ocean. Sci., 11, 120, https://doi.org/10.3319/TAO.2000.11.1.1(COSMIC).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and S. Sokolovskiy, 2010: Effect of sporadic E clouds on GPS radio occultation signals. Geophys. Res. Lett., 37, L18817, https://doi.org/10.1029/2010GL044561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., W. Randel, S. Sokolovskiy, C. Deser, Y.-H. Kuo, M. Hagan, J. Du, and W. Ward, 2008: Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data. J. Geophys. Res., 113, D03102, https://doi.org/10.1029/2007JD008725.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S.-P. Ho, S. Sokolovskiy, and Y.-H. Kuo, 2012: Structural evolution of the Madden-Julian oscillation from COSMIC radio occultation data. J. Geophys. Res., 117, D22108, https://doi.org/10.1029/2012JD017685.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. Sokolovskiy, W. S. Schreiner, and D. Hunt, 2019: Representation of vertical atmospheric structures by radio occultation observations in the upper troposphere and lower stratosphere: Comparison to high-resolution radiosonde profiles. J. Atmos. Oceanic Technol., 36, 655670 https://doi.org/10.1175/JTECH-D-18-0105.1.