• Anabor, V., D. J. Stensrud, and O. L. L. de Moraes, 2008: Serial upstream-propagating mesoscale convective system events over southeastern South America. Mon. Wea. Rev., 136, 30873105, https://doi.org/10.1175/2007MWR2334.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and Coauthors, 2003: Hydrological processes in regional climate model simulations of the central United States flood of June–July 1993. J. Hydrometeor., 4, 584598, https://doi.org/10.1175/1525-7541(2003)004<0584:HPIRCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechis, H., P. Salio, and J. J. Ruiz, 2020: Drylines in Argentina: Synoptic climatology and processes leading to their genesis. Mon. Wea. Rev., 148, 111129, https://doi.org/10.1175/MWR-D-19-0050.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., J. Hardin, B. Isom, A. Lindenmaier, A. Matthews, and D. Nelson, 2018: Ka-band ARM zenith radar filtered spectral data: General co-polarized mode (KAZRSPECCMASKGECOPOL). ARM User Facility, accessed 15 May 2020, https://doi.org/10.5439/1025218.

    • Search Google Scholar
    • Export Citation
  • Borque, P., P. Salio, M. Nicolini, and Y. G. Skabar, 2010: Environment associated with deep moist convection under SALLJ conditions: A case study. Wea. Forecasting, 25, 970984, https://doi.org/10.1175/2010WAF2222352.1.

    • Search Google Scholar
    • Export Citation
  • Borque, P., E. P. Luke, P. Kollias, and F. Yang, 2018: Relationship between turbulence and drizzle in continental and marine low stratiform clouds. J. Atmos. Sci., 75, 41394148, https://doi.org/10.1175/JAS-D-18-0060.1.

    • Search Google Scholar
    • Export Citation
  • Borque, P., L. Vidal, M. Rugna, T. J. Lang, M. G. Nicora, and S. W. Nesbitt, 2020: Distinctive signals in 1-minute observations of overshooting tops and lightning activity in a severe supercell thunderstorm. J. Geophys. Res. Atmos., 125, e2020JD032856, https://doi.org/10.1029/2020JD032856.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bueno Repinaldo, H. F., M. Nicolini, and Y. G. Skabar, 2015: Characterizing the diurnal cycle of low-level circulation and convergence using CFSR data in southeastern South America. J. Appl. Meteor. Climatol., 54, 671690, https://doi.org/10.1175/JAMC-D-14-0114.1.

    • Search Google Scholar
    • Export Citation
  • Camponogara, G., M. A. F. Silva Dias, and G. G. Carrio, 2014: Relationship between Amazon biomass burning aerosols and rainfall over the La Plata basin. Atmos. Chem. Phys., 14, 43974407, https://doi.org/10.5194/acp-14-4397-2014.

    • Search Google Scholar
    • Export Citation
  • Cancelada, M., P. Salio, and S. W. Nesbitt, 2019: CCN source regions during RELAMPAGO-CACTI field campaign. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A53U-3048, https://doi.org/10.1002/essoar.10506532.1.

    • Search Google Scholar
    • Export Citation
  • Cancelada, M., P. Salio, D. Vila, S. W. Nesbitt, and L. Vidal, 2020: Backward adaptive brightness temperature threshold technique (BAB3T): A methodology to determine extreme convective initiation regions using satellite infrared imagery. Remote Sens., 12, 337, https://doi.org/10.3390/rs12020337.

    • Search Google Scholar
    • Export Citation
  • Carril, A. F., and Coauthors, 2012: Performance of a multi-RCM ensemble for south eastern South America. Climate Dyn., 39, 27472768, https://doi.org/10.1007/s00382-012-1573-z.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 2001: The ARM millimeter wave cloud radars (MMCRs) and the active remote sensing of clouds (ARSCL) value added product (VAP). DOE Tech. Memo. ARMVAP-002.1, 56 pp., www.arm.gov/publications/tech_reports/arm-vap-002-1.pdf.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: The Cumulus, Photogrammetric, In Situ, and Doppler Observations Experiment of 2006. Bull. Amer. Meteor. Soc., 89, 5774, https://doi.org/10.1175/BAMS-89-1-57.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. Wu, and Y. Chen, 2012: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688, https://doi.org/10.1175/JCLI-D-11-00422.1.

    • Search Google Scholar
    • Export Citation
  • Della Ceca, L. S., M. F. G. Ferreyra, A. Lyapustin, A. Chudnovsky, L. Otero, H. Carreras, and F. Barnaba, 2018: Satellite-based view of the aerosol spatial and temporal variability in the Córdoba region (Argentina) using over ten years of high-resolution data. ISPRS J. Photogramm. Remote Sens., 145, 250267, https://doi.org/10.1016/j.isprsjprs.2018.08.016.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and T. C. J. Hill, 2020a: Cloud, Aerosol, and Complex Terrain Interactions (CACTI) ARM Mobile Facility (AMF) Measurements of Ice Nucleating Particles Field Campaign Report. Tech. Doc. DOE/SC-ARM-20-006, 8 pp., www.arm.gov/publications/programdocs/doe-sc-arm-20-006.pdf.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and T. C. J. Hill, 2020b: Cloud, Aerosol, and Complex Terrain Interactions (CACTI) ARM Aerial Facility (AAF) Measurements of Ice Nucleating Particles Field Campaign Report. Tech. Doc. DOE/SC-ARM-20-008, 9 pp., www.arm.gov/publications/programdocs/doe-sc-arm-20-008.pdf.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and T. C. J. Hill, 2020c: CACTI ARM Aerial Facility Measurements of Ice Nucleating Particles. ARM User Facility, accessed 25 August 2021, https://doi.org/10.5439/1607793.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and T. C. J. Hill, 2020d: CACTI ARM Mobile Facility Measurements of Ice Nucleating Particles. ARM User Facility, accessed 25 August 2021, https://doi.org/10.5439/1607786.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., T. C. J. Hill, and G. McFarquhar, 2018a: Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) Ice Nucleating Particle Measurements Field Campaign Report. Tech. Doc. DOE/SC-ARM-18-031, 6 pp., www.arm.gov/publications/programdocs/doe-sc-arm-18-031.pdf.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2018b: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Meas. Tech., 11, 62316257, https://doi.org/10.5194/amt-11-6231-2018.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., and T. L. Mote, 2009: A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol., 30, 418431, https://doi.org/10.1002/joc.1893.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., T. L. Mote, and J. M. Shepherd, 2009: The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Climate, 22, 45904605, https://doi.org/10.1175/2009JCLI2858.1.

    • Search Google Scholar
    • Export Citation
  • Fairless, T., and S. Giangrande, 2018: Interpolated Sonde (INTERPOLATEDSONDE). ARM User Facility, accessed 16 July 2019, https://doi.org/10.5439/1095316.

    • Search Google Scholar
    • Export Citation
  • Fairless, T., S. Giangrande, K. Johnson, E. Clothiaux, and P. Kollias, 2018: Active Remote Sensing of CLouds (ARSCL) product using Ka-band ARM zenith radars (ARSCLKAZR1KOLLIAS). ARM User Facility, accessed 17 September 2020, https://doi.org/10.5439/1350629.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I – Convective updrafts. J. Geophys. Res., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2019: Overview of the HI-SCALE field campaign: A new perspective on shallow convective clouds. Bull. Amer. Meteor. Soc., 100, 821840, https://doi.org/10.1175/BAMS-D-18-0030.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2005: Monitoring the transport of biomass-burning emissions in South America. Environ. Fluid Mech., 5, 135167, https://doi.org/10.1007/s10652-005-0243-7.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, https://doi.org/10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., and Coauthors, 2020: The Large-Eddy Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation (LASSO) activity for continental shallow convection. Bull. Amer. Meteor. Soc., 101, E462E479, https://doi.org/10.1175/BAMS-D-19-0065.1.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, C. D. Burleyson, K.-S. S. Lim, C. N. Long, D. Wu, and G. Thompson, 2014: Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos., 119, 122052–122068, https://doi.org/10.1002/2014JD022143.

    • Search Google Scholar
    • Export Citation
  • Han, B., and Coauthors, 2019: Cloud-resolving model intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. J. Geophys. Res. Atmos., 124, 10901117, https://doi.org/10.1029/2018JD029596.

    • Search Google Scholar
    • Export Citation
  • Hardin, J., A. Hunzinger, E. Schuman, A. Matthews, N. Bharadwaj, A. Varble, K. Johnson, and S. Giangrande, 2018a: C-band Scanning ARM Precipitation Radar, CF-Radial, Quality-Controlled Hemispheric Range-Height Indicator Scans (CSAPR2CFRHSRHIQC). ARM User Facility, accessed 1 October 2020, https://doi.org/10.5439/1615607.

    • Search Google Scholar
    • Export Citation
  • Hardin, J., A. Hunzinger, E. Schuman, A. Matthews, N. Bharadwaj, A. Varble, K. Johnson, and S. Giangrande, 2018b: C-band Scanning ARM Precipitation Radar, CF-Radial, Quality-Controlled Plan-Position Indicator Scans (CSAPR2CFRPPIQC). ARM User Facility, accessed 1 October 2020, https://doi.org/10.5439/1615604.

    • Search Google Scholar
    • Export Citation
  • Hardin, J., A. Hunzinger, E. Schuman, A. Matthews, N. Bharadwaj, A. Varble, K. Johnson, and S. Giangrande, 2018c: Ka-Band Scanning ARM Cloud Radar, CF-Radial, Quality-Controlled Hemispheric Range-Height Indicator Scans (KASACRCFRHSRHIQC). ARM User Facility, accessed 14 May 2020, https://doi.org/10.5439/1615605.

    • Search Google Scholar
    • Export Citation
  • Hardin, J., A. Hunzinger, E. Schuman, A. Matthews, N. Bharadwaj, A. Varble, K. Johnson, and S. Giangrande, 2020: CACTI Radar b1 Processing: Corrections, Calibrations, and Processing Report. Tech. Doc. DOE/SC-ARM-TR-244, 46 pp., https://arm.gov/publications/brochures/doe-sc-arm-tr-244.pdf.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the great plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, T. C. J., P. J. DeMott, Y. Tobo, J. Fröhlich-Nowoisky, B. F. Moffett, G. D. Franc, and S. M. Kreidenweis, 2016: Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys., 16, 71957211, https://doi.org/10.5194/acp-16-7195-2016.

    • Search Google Scholar
    • Export Citation
  • Hill, T. C. J., P. J. DeMott, F. Conen, and O. Möhler, 2018: Impacts of bioaerosols on atmospheric ice nucleation processes. Microbiology of Aerosols, 1st ed. A.-M. Delort and P. Amato, Eds., John Wiley & Sons, 155194, https://doi.org/10.1002/9781119132318.ch3a.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, https://doi.org/10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Holdridge, D., E. Keeler, and J. Kyrouac, 2018: Balloon-Borne Sounding System (SONDEWNPN). ARM User Facility, accessed 26 July 2019, https://doi.org/10.5439/1021460.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011RG000365.

  • Hunzinger, A., J. C. Hardin, N. Bharadwaj, A. Varble, and A. Matthews, 2020: An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans. Atmos. Meas. Tech., 13, 31473166, https://doi.org/10.5194/amt-13-3147-2020.

    • Search Google Scholar
    • Export Citation
  • Johnson, K., T. Fairless, and S. Giangrande, 2018: Ka-Band ARM zenith radar (KAZR) CF-Radial, Corrected VAP, General Mode (KAZRCFRCORGE). ARM User Facility, accessed 14 May 2020, https://doi.org/10.5439/1642217.

    • Search Google Scholar
    • Export Citation
  • Klein, C., and C. M. Taylor, C., 2020: Dry soils can intensify mesoscale convective systems. Proc. Natl. Acad. Sci. USA, 117, 21 13221 137, https://doi.org/10.1073/pnas.2007998117.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2014: Scanning ARM Cloud Radars. Part II: Data quality control and processing. J. Atmos. Oceanic Technol., 31, 583598, https://doi.org/10.1175/JTECH-D-13-00045.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, C., S. Salwen, M. Boyer, and A. Singh, 2018a: Condensation Particle Counter (AOSCPCF). ARM User Facility, accessed 23 December 2019, https://doi.org/10.5439/1046184.

    • Search Google Scholar
    • Export Citation
  • Kuang, C., S. Salwen, M. Boyer, and A. Singh, 2018b: Scanning Mobility Particle Sizer (AOSSMPS). ARM User Facility, accessed 23 December 2019, https://doi.org/10.5439/1095583.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Coauthors, 2020: Gargantuan hail in Argentina. Bull. Amer. Meteor. Soc., 101, E1241E1258, https://doi.org/10.1175/BAMS-D-19-0012.1.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Search Google Scholar
    • Export Citation
  • Lang, S. E., W. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, https://doi.org/10.1175/JAS-D-10-05000.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Search Google Scholar
    • Export Citation
  • Levin, E. J. T., and Coauthors, 2019: Characteristics of ice nucleating particles in and around California winter storms. J. Geophys. Res., 124, 11 53011 551, https://doi.org/10.1029/2019JD030831.

    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, and S. M. Kreidenweis, 2016: The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs. J. Geophys. Res. Atmos., 121, 79137935, https://doi.org/10.1002/2016JD024762.

    • Search Google Scholar
    • Export Citation
  • Marquis, J. N., A. C. Varble, P. Robinson, T. C. Nelson, and K. Friedrich, 2021: Low-level mesoscale and cloud-scale interactions promoting deep convective initiation. Mon. Wea. Rev., 8, 24732495, https://doi.org/10.1175/MWR-D-20-0391.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, A., and D. Nelson, 2018: Water Content Meter aboard aircraft (AAFWCM). ARM User Facility, accessed 26 October 2020, https://doi.org/10.5439/1632815.

    • Search Google Scholar
    • Export Citation
  • Mei, F., and M. Pekour, 2018a: Cloud Condensation Nuclei Particle Counter aboard aircraft (AAFCCN2COLA). ARM User Facility, accessed 26 October 2020, https://doi.org/10.5439/1482582.

    • Search Google Scholar
    • Export Citation
  • Mei, F., and M. Pekour, 2018b: Condensation Particle Counter aboard aircraft (AAFCPCFISO). ARM User Facility, accessed 26 October 2020, https://doi.org/10.5439/1368538.

    • Search Google Scholar
    • Export Citation
  • Mei, F., D. Zhang, and D. Nelson, 2018: Fast Cloud Droplet Probe aboard aircraft (AAFFCDP). ARM User Facility, accessed 26 October 2020, https://doi.org/10.5439/1417472.

    • Search Google Scholar
    • Export Citation
  • Morris, V., and B. Ermold, 2018: Ceilometer (CEIL). ARM User Facility, accessed 14 May 2020, https://doi.org/10.5439/1181954.

  • Moser, D. H., and S. Lasher-Trapp, 2018: Cloud-spacing effects upon entrainment and rainfall along a convective line. J. Appl. Meteor. Climatol., 57, 18651882, https://doi.org/10.1175/JAMC-D-17-0363.1.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling prospective. J. Atmos. Sci., 77, 39293949, https://doi.org/10.1175/JAS-D-19-0190.1.

    • Search Google Scholar
    • Export Citation
  • Nelson, T. C., J. Marquis, A. Varble, and K. Friedrich, 2021: Radiosonde observations of environments supporting deep moist convection initiation during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 289309, https://doi.org/10.1175/MWR-D-20-0148.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and Coauthors, 2021: A storm safari in subtropical South America: Proyecto RELAMPAGO. 102, E1621–E1644, Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-20-0029.1.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., and R. Krishnamurthy, 2018: Doppler Lidar (DLFPT). ARM User Facility, accessed 14 May 2020, https://doi.org/10.5439/1025185.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., and Y. G. Skabar, 2011: Diurnal cycle in convergence patterns in the boundary layer east of the Andes and convection. Atmos. Res., 100, 377390, https://doi.org/10.1016/j.atmosres.2010.09.019.

    • Search Google Scholar
    • Export Citation
  • Nicolini, M., C. Saulo, J. C. Torres, and P. Salio, 2002: Strong South American low level jet events characterization during warm season and implications for enhanced precipitation. Meteorologica, 27, 5969.

    • Search Google Scholar
    • Export Citation
  • Öktem, R. J., and D. Romps, 2021: Point Cloud of Cloud Points (PCCP). ARM User Facility, accessed 1 October 2020, https://doi.org/10.5439/18048912.

    • Search Google Scholar
    • Export Citation
  • Öktem, R. J., Prabhat, J. Lee, A. Thomas, P. Zuidemaand, and D. M. Romps, 2014: Stereophotogrammetry of oceanic clouds. J. Atmos. Oceanic Technol., 31, 14821501, https://doi.org/10.1175/JTECH-D-13-00224.1.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and Coauthors, 2018: Contributions of biogenic material to the atmospheric ice-nucleating particle population in north western Europe. Sci. Rep., 8, 13 821, https://doi.org/10.1038/s41598-018-31981-7.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., and Coauthors, 2020: Neglecting irrigation contributes to the simulated summertime warm-and-dry bias in the central United States. NPJ Climate Atmos. Sci., 3, 31, https://doi.org/10.1038/s41612-020-00135-w.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. M. Chaplin, M. D. Zuluaga, and R. A. Houze Jr., 2016: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, https://doi.org/10.1175/JHM-D-15-0067.1.

    • Search Google Scholar
    • Export Citation
  • Ribeiro, B. Z., and L. F. Bosart, 2018: Elevated mixed layers and associated severe thunderstorm environments in South and North America. Mon. Wea. Rev., 146, 328, https://doi.org/10.1175/MWR-D-17-0121.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2015: Pathways between soil moisture and precipitation in southeastern South America. Atmos. Sci. Lett., 16, 267272, https://doi.org/10.1002/asl2.552.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and A. C. Saulo, 2002: Chaco low level jet events characterization during the austral summer season by ERA reanalysis. J. Geophys. Res., 107, 4816, https://doi.org/10.1029/2001JD001315.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., M. E. Seluchi, and M. Nicolini, 2004: A case study of a Chaco low-level jet event. Mon. Wea. Rev., 132, 26692683, https://doi.org/10.1175/MWR2815.1.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., J. Ruiz, and Y. G. Skabar, 2007: Synergism between the low-level jet and organized convection at its exit region. Mon. Wea. Rev., 135, 13101326, https://doi.org/10.1175/MWR3317.1.

    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., L. Ferreira, J. Nogués-Paegle, M. Seluchi, and J. Ruiz, 2010: Land–atmosphere interactions during a northwestern Argentina low event. Mon. Wea. Rev., 138, 24812498, https://doi.org/10.1175/2010MWR3227.1.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2014: The DOE ARM Aerial Facility. Bull. Amer. Meteor. Soc., 95, 723742, https://doi.org/10.1175/BAMS-D-13-00040.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Coauthors, 2021: Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. Mon. Wea. Rev., 149, 14391458, https://doi.org/10.1175/MWR-D-20-0293.1.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., A. C. Saulo, M. Nicolini, and P. Satyamurty, 2003: The Northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378, https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., R. Garreaud, F. A. Norte, and A. C. Saulo, 2006: Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev., 134, 33173335, https://doi.org/10.1175/MWR3247.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica Experiment. Bull. Amer. Meteor. Soc., 93, 15671579, https://doi.org/10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., and Coauthors, 2013: Evaluation of an ensemble regional climate model simulations over South America driven by the ERA-Interim reanalyses: Model performance and uncertainties. Climate Dyn., 41, 11391157, https://doi.org/10.1007/s00382-013-1667-2.

    • Search Google Scholar
    • Export Citation
  • Song, H., W. Lin, Y. Lin, A. B. Wolf, R. Neggers, L. J. Donner, A. D. Del Genio, and Y. Liu, 2013: Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site. J. Climate, 26, 54675492, https://doi.org/10.1175/JCLI-D-12-00263.1.

    • Search Google Scholar
    • Export Citation
  • Sörensson, A. A., and C. G. Menéndez, 2011: Soil-precipitation coupling in South America. Tellus, 63A, 5668, https://doi.org/10.1111/j.1600-0870.2010.00468.x.

    • Search Google Scholar
    • Export Citation
  • Stanford, M. W., A. Varble, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, R. Potts, and A. Protat, 2017: A ubiquitous ice size bias in simulations of tropical deep convection. Atmos. Chem. Phys., 17, 95999621, https://doi.org/10.5194/acp-17-9599-2017.

    • Search Google Scholar
    • Export Citation
  • Sullivan, R., D. Cook, and E. Keeler, 2018: Surface Energy Balance System (SEBS). ARM User Facility, accessed 10 August 2020, https://doi.org/10.5439/1025274.

    • Search Google Scholar
    • Export Citation
  • Suski, K. J., T. C. J. Hill, E. J. T. Levin, A. Miller, P. J. DeMott, and S. M. Kreidenweis, 2018: Agricultural harvesting emissions of ice-nucleating particles. Atmos. Chem. Phys., 18, 13 75513 771, https://doi.org/10.5194/acp-18-13755-2018.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and Coauthors, 2020: Multiple-platform and multiple-Doppler radar observations of a supercell thunderstorm in South America during RELAMPAGO. Mon. Wea. Rev., 148, 32253241, https://doi.org/10.1175/MWR-D-20-0125.1.

    • Search Google Scholar
    • Export Citation
  • Uin, J., C. Salwen, and G. Senum, 2018: Cloud Condensation Nuclei Particle Counter (AOSCCN2COLAAVG). ARM User Facility, accessed 23 December 2019.

    • Search Google Scholar
    • Export Citation
  • Varble, A., 2018: Erroneous attribution of deep convective invigoration to aerosol concentration. J. Atmos. Sci., 75, 13511368, https://doi.org/10.1175/JAS-D-17-0217.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, https://doi.org/10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014a: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014b: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics. J. Geophys. Res. Atmos., 119, 13 91913 945, https://doi.org/10.1002/2013JD021372.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2019: Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Field Campaign Report. Tech. Doc. DOE/SC-ARM-19-028, 23 pp., www.arm.gov/publications/programdocs/doe-sc-arm-19-028.pdf.

    • Search Google Scholar
    • Export Citation
  • Varble, A., H. Morrison, and E. Zipser, 2020: Effects of under-resolved convective dynamics on the evolution of a squall line. Mon. Wea. Rev., 148, 289311, https://doi.org/10.1175/MWR-D-19-0187.1.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, https://doi.org/10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization. Quart. J. Roy. Meteor. Soc., 141, 433448, https://doi.org/10.1002/qj.2363.

    • Search Google Scholar
    • Export Citation
  • Wang, D., M. Bartholomew, and E. Cromwell, 2018: Weighing Bucket Precipitation Gauge (WBPLUVIO2). ARM User Facility, accessed 27 December 2019.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. L. Tuckett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys., 13, 33453361, https://doi.org/10.5194/acp-13-3345-2013.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The convective and orographically induced precipitation study. Bull. Amer. Meteor. Soc., 89, 14771486, https://doi.org/10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
  • Zelenyuk, A., and Coauthors, 2010: In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II. Anal. Chem., 82, 79437951, https://doi.org/10.1021/ac1013892.

    • Search Google Scholar
    • Export Citation
  • Zelenyuk, A., D. Imre, J. Wilson, Z. Y. Zhang, J. Wang, and K. Mueller, 2015: Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context. J. Amer. Soc. Mass Spectrom., 26, 257270, https://doi.org/10.1007/s13361-014-1043-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, https://doi.org/10.1175/2010JAS3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., A. C. Varble, Z. Feng, J. C. Hardin, and E. J. Zipser, 2021: Growth of mesoscale convective systems in observations and a seasonal convection-permitting simulation over Argentina. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-20-0411.1, in press.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 0
Full Text Views 946 947 112
PDF Downloads 638 638 99

Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment

View More View Less
  • 1 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, and Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 3 Centro de Investigaciones del Mar y la Atmósfera, Instituto Franco-Argentino para el Estudio del Clima y sus Impactos, Universidad de Buenos Aires, Buenos Aires, Argentina
  • | 4 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 5 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, and Fortem Technologies, Pleasant Grove, Utah
  • | 6 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 7 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 8 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 9 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 10 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 11 Department of Earth and Planetary Science, University of California, Berkeley, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • | 12 Universidade dos Açores, Ponta Delgada, Portugal
  • | 13 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 14 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 15 Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 16 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 17 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 18 Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 19 Department of Earth and Planetary Science, University of California, Berkeley, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • | 20 Servicio Meteorológico Nacional, Buenos Aires, Argentina
  • | 21 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 22 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 23 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 24 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam Varble, adam.varble@pnnl.gov

This article is included in the RELAMPAGO-CACTI special collection.

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam Varble, adam.varble@pnnl.gov

This article is included in the RELAMPAGO-CACTI special collection.

Save