Akperov, M., V. A. Semenov, I. I. Mokhov, W. Dorn, and A. Rinke, 2020: Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations. Environ. Res. Lett., 15, 024009, https://doi.org/10.1088/1748-9326/ab6399.
Ardyna, M., and K. Arrigo, 2020: Phytoplankton dynamics in a changing Arctic Ocean. Nat. Climate Change, 10, 892–903, https://doi.org/10.1038/s41558-020-0905-y.
Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 3655–3680, https://doi.org/10.1175/JCLI-D-18-0563.1.
Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci., 41, 237–276, https://doi.org/10.1080/14786449608620846.
Barrientos-Velasco, C., H. Deneke, H. Griesche, P. Seifert, R. Engelmann, andA. Macke, 2020: Spatiotemporal variability of solar radiation introduced by clouds over Arctic sea ice. Atmos. Meas. Tech., 13, 1757–1775, https://doi.org/10.5194/amt-13-1757-2020.
Barrientos-Velasco, C., H. Deneke, A. Hünerbein, H. J. Griesche, P. Seifert, and A. Macke, 2022: Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106. Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022.
Barthlott, S., and Coauthors, 2017: Tropospheric water vapour isotopologue data (H2 16O, H2 18O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra. Earth Syst. Sci. Data, 9, 15–29, https://doi.org/10.5194/essd-9-15-2017.
Baum, B., P. Yang, A. Heymsfield, C. Schmitt, Y. Xie, A. Bansemer, Y. Hu, andZ. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 1037–1056, https://doi.org/10.1175/2010JAMC2608.1.
Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.
Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.
Block, K., F. Schneider, J. Mülmenstädt, M. Salzmann, and J. Quaas, 2020: Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus, 72A, 1696139, https://doi.org/10.1080/16000870.2019.1696139.
Boeke, R. C., P. C. Taylor, and S. A. Sejas, 2021: On the nature of the Arctic’s positive lapse-rate feedback. Geophys. Res. Lett., 48, e2020GL091109, https://doi.org/10.1029/2020GL091109.
Bougoudis, I., A.-M. Blechschmidt, A. Richter, S. Seo, J. P. Burrows, N. Theys, and A. Rinke, 2020: Long-term time series of Arctic tropospheric BrO derived from UV–VIS satellite remote sensing and its relation to first-year sea ice. Atmos. Chem. Phys., 20, 11869–11892, https://doi.org/10.5194/acp-20-11869-2020.
Box, J. E., A. Wehrlé, D. van As, R. S. Fausto, K. K. Kjeldsen, A. Dachauer, A. P. Ahlstrøm, and G. Picard, 2022: Greenland ice sheet rainfall, heat and albedo feedback impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett., 49, e2021GL097356, https://doi.org/10.1029/2021GL097356.
Bresson, H., and Coauthors, 2022: Case study of a moisture intrusion over the Arctic with the Icosahedral Non-hydrostatic (ICON) model: Resolution dependence of its representation. Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022.
Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619, https://doi.org/10.3402/tellusa.v21i5.10109.
Buschmann, M., N. M. Deutscher, M. Palm, T. Warneke, C. Weinzierl, andJ. Notholt, 2017: The Arctic seasonal cycle of total column CO2 and CH4 from ground-based solar and lunar FTIR absorption spectrometry. Atmos. Meas. Tech., 10, 2397–2411, https://doi.org/10.5194/amt-10-2397-2017.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.
Chechin, D. G., I. A. Makhotina, C. Lüpkes, and A. P. Makshtas, 2019: Effect of wind speed and leads on clear-sky cooling over Arctic sea ice during polar night. J. Atmos. Sci., 76, 2481–2503, https://doi.org/10.1175/JAS-D-18-0277.1.
Chechin, D. G., C. Lüpkes, J. Hartmann, A. Ehrlich, and M. Wendisch, 2022: Turbulent structure of the Arctic boundary layer in early summer driven by stability, wind shear and cloud top radiative cooling: ACLOUD airborne observations. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-398.
Chylik, J., D. Chechin, R. Dupuy, B. S. Kulla, C. Lüpkes, S. Mertes, M. Mech, and R. A. J. Neggers, 2023: Aerosol-cloud-turbulence interactions in well-coupled Arctic boundary layers over open water. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-888, in press.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, https://doi.org/10.1038/ngeo2234.
Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.
Crasemann, B., D. Handorf, R. Jaiser, K. Dethloff, T. Nakamura, J. Ukita, andK. Yamazaki, 2017: Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with Arctic sea ice loss? Polar Sci., 14, 9–20, https://doi.org/10.1016/j.polar.2017.09.002.
Crawford, A. D., J. V. Lukovich, M. R. McCrystall, J. C. Stroeve, and D. G. Barber, 2022: Reduced sea ice enhances intensification of winter storms over the Arctic Ocean. J. Climate, 35, 3353–3370, https://doi.org/10.1175/JCLI-D-21-0747.1.
Crewell, S., and Coauthors, 2021: A systematic assessment of water vapor products in the Arctic: From instantaneous measurements to monthly means. Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021.
Dahlke, S., and M. Maturilli, 2017: Contribution of atmospheric advection to the amplified winter warming in the Arctic North Atlantic region. Adv. Meteor., 2017, 4928620, https://doi.org/10.1155/2017/4928620.
Donth, T., E. Jäkel, A. Ehrlich, B. Heinold, J. Schacht, A. Herber, M. Zanatta, andM. Wendisch, 2020: Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic. Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020.
Dorn, W., A. Rinke, C. Köberle, K. Dethloff, and R. Gerdes, 2019: Evaluation of the sea-ice simulation in the upgraded version of the coupled regional atmosphere-ocean-sea ice model HIRHAM–NAOSIM 2.0. Atmosphere, 10, 431, https://doi.org/10.3390/atmos10080431.
Dyer, A., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363–372, https://doi.org/10.1007/BF00240838.
Ebell, K., T. Nomokonova, M. Maturilli, and C. Ritter, 2020: Radiative effect of clouds at Ny–Ålesund, Svalbard, as inferred from ground-based remote sensing observations. J. Appl. Meteor. Climatol., 59, 3–22, https://doi.org/10.1175/JAMC-D-19-0080.1.
Egerer, U., M. Gottschalk, H. Siebert, A. Ehrlich, and M. Wendisch, 2019: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: First applications in the cloudy Arctic boundary layer. Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019.
Egerer, U., A. Ehrlich, M. Gottschalk, H. Griesche, R. A. J. Neggers, H. Siebert, andM. Wendisch, 2021: Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top. Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021.
Ehrlich, A., and Coauthors, 2019: A comprehensive in situ and remote sensing data set from the Arctic Cloud Observations Using airborne measurements during polar Day (ACLOUD) campaign. Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019.
Engelmann, R., and Coauthors, 2021: Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: An introduction. Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021.
Flanner, M. G., 2013: Arctic climate sensitivity to local black carbon. J. Geophys. Res. Atmos., 118, 1840–1851, https://doi.org/10.1002/jgrd.50176.
Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.
Geerts, B., and Coauthors, 2022: The COMBLE campaign: A study of marine boundary layer clouds in Arctic cold-air outbreaks. Bull. Amer. Meteor. Soc., 103, E1371–E1389, https://doi.org/10.1175/BAMS-D-21-0044.1.
Gierens, R., S. Kneifel, M. D. Shupe, K. Ebell, M. Maturilli, and U. Löhnert, 2020: Low-level mixed-phase clouds in a complex Arctic environment. Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020.
Gliß, J., and Coauthors, 2021: AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021.
Goosse, H., and Coauthors, 2018: Quantifying climate feedbacks in polar regions. Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.
Gorodetskaya, I., T. Silva, H. Schmithüsen, and N. Hirasawa, 2020: Atmospheric river signatures in radiosonde profiles and reanalyses at the Dronning Maud Land coast, East Antarctica. Adv. Atmos. Sci., 37, 455–476, https://doi.org/10.1007/s00376-020-9221-8.
Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2007: SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315–333, https://doi.org/10.1007/s10546-007-9177-6.
Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson,M. Nicolaus, and M. A. Granskog, 2017a: Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett., 44, 6974–6983, https://doi.org/10.1002/2017GL073395.
Graham, R. M., and Coauthors, 2017b: A comparison of the two Arctic atmospheric winter states observed during N-ICE2015 and SHEBA. J. Geophys. Res. Atmos., 122, 5716–5737, https://doi.org/10.1002/2016JD025475.
Griesche, H. J., and Coauthors, 2020: Application of the shipborne remote sensing supersite OCEANET for profiling of Arctic aerosols and clouds during Polarstern cruise PS106. Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020.
Griesche, H. J., K. Ohneiser, P. Seifert, M. Radenz, R. Engelmann, and A. Ansmann, 2021: Contrasting ice formation in Arctic clouds: Surface-coupled vs. surface-decoupled clouds. Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021.
Gryanik, V. M., and C. Lüpkes, 2018: An efficient non-iterative bulk parametrization of surface fluxes for stable atmospheric conditions over polar sea-ice. Bound.-Layer Meteor., 166, 301–325, https://doi.org/10.1007/s10546-017-0302-x.
Gryanik, V. M., and C. Lüpkes, 2022: A package of momentum and heat transfer coefficients for the stable surface layer extended by new coefficients over sea ice. Bound.-Layer Meteor., https://doi.org/10.1007/s10546-022-00730-9.
Gryanik, V. M., C. Lüpkes, A. Grachev, and D. Sidorenko, 2020: New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models. J. Atmos. Sci., 77, 2687–2716, https://doi.org/10.1175/JAS-D-19-0255.1.
Gryanik, V. M., C. Lüpkes, D. Sidorenko, and A. Grachev, 2021: A universal approach for the non-iterative parametrization of near-surface turbulent fluxes in climate and weather prediction models. J. Adv. Model. Earth Syst., 13, e2021MS002590, https://doi.org/10.1029/2021MS002590.
Guan, B., and D. E. Waliser, 2019: Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics. J. Geophys. Res. Atmos., 124, 12523–12552, https://doi.org/10.1029/2019JD031205.
Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate,17, 1550–1568, https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.
Hartmann, M., T. Blunier, S. O. Brügger, J. Schmale, M. Schwikowski, A. Vogel, H. Wex, and F. Stratmann, 2019: Variation of ice nucleating particles in the European Arctic over the last centuries. Geophys. Res. Lett., 46, 4007–4016, https://doi.org/10.1029/2019GL082311.
Hartmann, M., and Coauthors, 2020: Wintertime airborne measurements of ice nucleating particles in the high Arctic: A hint to a marine, biogenic source for ice nucleating particles. Geophys. Res. Lett., 47, e2020GL087770, https://doi.org/10.1029/2020GL087770.
Hartmann, M., and Coauthors, 2021: Terrestrial or marine—Indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7°N. Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021.
Hofmann, Z., W.-J. von Appen, and C. Wekerle, 2021: Seasonal and mesoscale variability of the two Atlantic water recirculation pathways in Fram Strait. J. Geophys. Res. Oceans, 126, e2020JC017057, https://doi.org/10.1029/2020JC017057.
Huang, Y., and Coauthors, 2019: Thicker clouds and accelerated Arctic sea ice decline: The atmosphere-sea ice interactions in spring. Geophys. Res. Lett., 46, 6980–6989, https://doi.org/10.1029/2019GL082791.
Inoue, J., and Coauthors, 2021: Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic Ocean.J. Geophys. Res. Atmos., 126, e2020JD033904, https://doi.org/10.1029/2020JD033904.
Jafariserajehlou, S., L. Mei, M. Vountas, V. Rozanov, J. P. Burrows, andR. Hollmann, 2019: A cloud identification algorithm over the Arctic for use with AATSR/SLSTR measurements. Atmos. Meas. Tech., 12, 1059–1076, https://doi.org/10.5194/amt-12-1059-2019.
Jaiser, R., T. Nakamura, D. Handorf, K. Dethloff, J. Ukita, and K. Yamazaki, 2016: Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations. J. Geophys. Res. Atmos., 121, 7564–7577, https://doi.org/10.1002/2015JD024679.
Jäkel, E., J. Stapf, M. Wendisch, M. Nicolaus, W. Dorn, and A. Rinke, 2019: Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns. Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019.
Jeffries, M. O., J. E. E. Overland, and D. K. Perovich, 2013: The Arctic shifts to a new normal. Phys. Today, 66, 35–40, https://doi.org/10.1063/PT.3.2147.
Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, https://doi.org/10.1029/2009JD011773.
Kecorius, S., and Coauthors, 2019: New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: A case study in the Fram Strait and Barents Sea. Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019.
Kodros, J. K., and Coauthors, 2018: Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect. Atmos. Chem. Phys., 18, 11345–11361, https://doi.org/10.5194/acp-18-11345-2018.
Kovács, T., R. Gerdes, and J. Marshall, 2020: Wind feedback mediated by sea ice in the Nordic seas. J. Climate, 33, 6621–6632, https://doi.org/10.1175/JCLI-D-19-0632.1.
Kretzschmar, J., M. Salzmann, J. Mülmenstädt, and J. Quaas, 2019: Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes. Atmos. Chem. Phys., 19, 10571–10589, https://doi.org/10.5194/acp-19-10571-2019.
Kretzschmar, J., J. Stapf, D. Klocke, M. Wendisch, and J. Quaas, 2020: Employing airborne radiation and cloud microphysics observations to improve cloud representation in ICON at kilometer-scale resolution in the Arctic. Atmos. Chem. Phys., 20, 13145–13165, https://doi.org/10.5194/acp-20-13145-2020.
Krumpen, T., and Coauthors, 2021: MOSAiC drift expedition from October 2019 to July 2020: Sea ice conditions from space and comparison with previous years. Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021.
Kulla, B. S., and C. Ritter, 2019: Water vapor calibration: Using a Raman lidar and radiosoundings to obtain highly resolved water vapor profiles. Remote Sens., 11, 616, https://doi.org/10.3390/rs11060616.
Lampert, A., and Coauthors, 2020: Unmanned aerial systems for investigating the polar atmospheric boundary layer—–Technical challenges and examples of applications. Atmosphere, 11, 416, https://doi.org/10.3390/atmos11040416.
Lauer, M., K. Block, M. Salzmann, and J. Quaas, 2020: CO2-forced changes of Arctic temperature lapse rates in CMIP5 models. Meteor. Z., 29, 79–93, https://doi.org/10.1127/metz/2020/0975.
Lelli, L., M. Vountas, N. Khosravi, and J. P. Burrows, 2022: Satellite-based evidence of regional and seasonal Arctic cooling by brighter and wetter clouds. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-28.
Linke, O., and J. Quaas, 2022: The impact of CO2-driven climate change on the Arctic atmospheric energy budget in CMIP6 climate model simulations. Tellus, 74A, 106–118, https://doi.org/10.16993/tellusa.29.
Loewe, K., A. M. L. Ekman, M. Paukert, J. Sedlar, M. Tjernstrom, and C. Hoose, 2017: Modelling micro- and macrophysical contributors to the dissipation of an arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017.
Lonardi, M., and Coauthors, 2022: Tethered balloon-borne profile measurements of atmospheric properties in the cloudy atmospheric boundary layer over the Arctic sea ice during MOSAiC: Overview and first results. Elementa, 10, 000120, https://doi.org/10.1525/elementa.2021.000120.
Losa, S., and Coauthors, 2017: Synergistic exploitation of hyper- and multispectral precursor Sentinel measurements to determine phytoplankton functional types (SynSenPFT). Front. Mar. Sci., 4, 203, https://doi.org/10.3389/fmars.2017.00203.
Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202, https://doi.org/10.1007/BF00117978.
Lu, J., G. Heygster, and G. Spreen, 2018: Atmospheric correction of sea ice concentration retrieval for 89 GHz AMSR-E observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 1442–1457, https://doi.org/10.1109/JSTARS.2018.2805193.
Lu, J., R. Scarlat, G. Heygster, and G. Spreen, 2022: Reducing weather influences on an 89 GHz sea ice concentration algorithm in the Arctic using retrievals from an optimal estimation method. J. Geophys. Res. Oceans, 127, e2019JC015912, https://doi.org/10.1029/2019JC015912.
Ludwig, V., G. Spreen, and L. T. Pedersen, 2020: Evaluation of a new merged sea-ice concentration dataset at 1 km resolution from thermal infrared and passive microwave satellite data in the Arctic. Remote Sens., 12, 3183, https://doi.org/10.3390/rs12193183.
Lund, M. T., B. H. Samset, R. B. Skeie, D. Watson-Parris, J. M. Katich, J. P. Schwarz, and B. Weinzierl, 2018: Short black carbon lifetime inferred from a global set of aircraft observations. npj Climate Atmos. Sci., 1, 31, https://doi.org/10.1038/s41612-018-0040-x.
Lüpkes, C., T. Vihma, G. Birnbaum, and U. Wacker, 2008: Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night. Geophys. Res. Lett., 35, L03805, https://doi.org/10.1029/2007GL032461.
Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 3–15, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.
Markus, T., and Coauthors, 2006: Microwave signatures of snow on sea ice: Observations. IEEE Trans. Geosci. Remote Sens., 44, 3081–3090, https://doi.org/10.1109/TGRS.2006.883134.
McCrystall, M. R., J. Stroeve, M. Serreze, B. C. Forbes, and J. A. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12, 6765, https://doi.org/10.1038/s41467-021-27031-y.
Mech, M., L.-L. Kliesch, A. Anhäuser, T. Rose, P. Kollias, and S. Crewell, 2019: Microwave Radar/radiometer for Arctic Clouds (MiRAC): First insights from the ACLOUD campaign. Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019.
Mech, M., M. Maahn, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, andS. Crewell, 2020: PAMTRA 1.0: The Passive and Active Microwave radiative Transfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.
Mech, M., and Coauthors, 2022: MOSAiC-ACA and AFLUX—Arctic airborne campaigns characterizing the exit area of MOSAiC. Sci. Data, 9, 790, https://doi.org/10.1038/s41597-022-01900-7.
Mei, L., V. Rozanov, M. Vountas, and J. P. Burrows, 2018: The retrieval of ice cloud parameters from multi-spectral satellite observations of reflectance using a modified XBAER algorithm. Remote Sens. Environ., 215, 128–144, https://doi.org/10.1016/j.rse.2018.06.007.
Mei, L., V. Rozanov, and J. P. Burrows, 2020a: A fast and accurate radiative transfer model for aerosol remote sensing. J. Quant. Spectrosc. Radiat. Transfer, 256, 107270, https://doi.org/10.1016/j.jqsrt.2020.107270.
Mei, L., V. Rozanov, C. Ritter, B. Heinold, Z. Jiao, M. Vountas, and J. P. Burrows, 2020b: Correction of “A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR.” IEEE Trans. Geosci. Remote Sens., 58, 5820, https://doi.org/10.1109/TGRS.2020.2971236.
Mei, L., S. Vandenbussche, V. Rozanov, E. Proestakis, V. Amiridis, S. Callewaert,M. Vountas, and J. P. Burrows, 2020c: On the retrieval of aerosol optical depth over cryosphere using passive remote sensing. Remote Sens. Environ., 241, 111731, https://doi.org/10.1016/j.rse.2020.111731.
Mei, L., V. Rozanov, C. Pohl, M. Vountas, and J. P. Burrows, 2021a: The retrieval of snow properties from SLSTR Sentinel-3—Part 1: Method description and sensitivity study. Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021.
Mei, L., V. Rozanov, E. Jäkel, X. Cheng, M. Vountas, and J. P. Burrows, 2021b: The retrieval of snow properties from SLSTR Sentinel-3—Part 2: Results and validation. Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021.
Mei, L., V. Rozanov, Z. Jiao, and J. P. Burrows, 2022: A new snow bidirectional reflectance distribution function model in spectral regions from UV to SWIR: Model development and application to ground-based, aircraft and satellite observation. ISPRS J. Photogramm. Remote Sens., 188, 269–285, https://doi.org/10.1016/j.isprsjprs.2022.04.010.
Metzner, E. P., M. Salzmann, and R. Gerdes, 2020: Arctic Ocean surface energy flux and the cold halocline in future climate projections. J. Geophys. Res. Oceans, 125, e2019JC015554, https://doi.org/10.1029/2019JC015554.
Mewes, D., and C. Jacobi, 2019: Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmos. Chem. Phys., 19, 3927–3937, https://doi.org/10.5194/acp-19-3927-2019.
Mewes, D., and C. Jacobi, 2020: Horizontal temperature fluxes in the Arctic in CMIP5 model results analyzed with self-organizing maps. Atmosphere, 11, 251, https://doi.org/10.3390/atmos11030251.
Michaelis, J., and C. Lüpkes, 2022: The impact of lead patterns on mean profiles of wind, temperature, and turbulent fluxes in the atmospheric boundary layer over sea ice. Atmosphere, 13, 148, https://doi.org/10.3390/atmos13010148.
Michaelis, J., C. Lüpkes, X. Zhou, M. Gryschka, and V. M. Gryanik, 2020: Influence of lead width on the turbulent flow over sea ice leads: Modeling and parametrization. J. Geophys. Res. Atmos., 125, e2019JD031996, https://doi.org/10.1029/2019JD031996.
Michaelis, J., C. Lüpkes, A. U. Schmitt, and J. Hartmann, 2021: Modelling and parametrization of the convective flow over leads in sea ice and comparison with airborne observations. Quart. J. Roy. Meteor. Soc., 147, 914–943, https://doi.org/10.1002/qj.3953.
Mioche, G., and Coauthors, 2017: Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas. Atmos. Chem. Phys., 17, 12845–12869, https://doi.org/10.5194/acp-17-12845-2017.
Moon, T. A., M. L. Druckenmiller, and R. L. Thoman, Eds., 2021: Arctic report card 2021. NOAA Tech. Rep., 126 pp., https://arctic.noaa.gov/Portals/7/ArcticReportCard/Documents/ArcticReportCard_full_report2021.pdf.
Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332.
Naakka, T., T. Nygård, and T. Vihma, 2018: Arctic humidity inversions: Climatology and processes. J. Climate, 31, 3765–3787, https://doi.org/10.1175/JCLI-D-17-0497.1.
Nakoudi, K., and Coauthors, 2020: Does the intra-Arctic modification of long-range transported aerosol affect the local radiative budget? (A case study). Remote Sens., 12, 2112, https://doi.org/10.3390/rs12132112.
Nakoudi, K., C. Ritter, and I. S. Stachlewska, 2021a: Properties of cirrus clouds over the European Arctic (Ny-Ålesund, Svalbard). Remote Sens., 13, 4555, https://doi.org/10.3390/rs13224555.
Nakoudi, K., I. S. Stachlewska, and C. Ritter, 2021b: An extended lidar-based cirrus cloud retrieval scheme: First application over an Arctic site. Opt. Express, 29, 8553–8580, https://doi.org/10.1364/OE.414770.
Nash, D., D. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 6804–6821, https://doi.org/10.1029/2017JD028130.
Neff, W., 2018: Atmospheric rivers melt Greenland. Nat. Climate Change, 8, 857–858, https://doi.org/10.1038/s41558-018-0297-4.
Neggers, R. A. J., J. Chylík, U. Egerer, H. Griesche, V. Schemann, P. Seifert, H. Siebert, and A. Macke, 2019: Local and remote controls on Arctic mixed-layer evolution. J. Adv. Model. Earth Syst., 11, 2214–2237, https://doi.org/10.1029/2019MS001671.
Nicolaus, M., and Coauthors, 2022: Overview of the MOSAiC expedition: Snow and sea ice. Elementa, 10, 000046, https://doi.org/10.1525/elementa.2021.000046.
Nixdorf, U., and Coauthors, 2021: MOSAiC extended acknowledgement. Zenodo, https://doi.org/10.5281/zenodo.5179739.
Nomokonova, T., K. Ebell, U. Löhnert, M. Maturilli, C. Ritter, and E. O’Connor, 2019: Statistics on clouds and their relation to thermodynamic conditions at Ny–Ålesund using ground-based sensor synergy. Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019.
Nomokonova, T., K. Ebell, U. Löhnert, M. Maturilli, and C. Ritter, 2020: The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund. Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020.
Ohata, S., and Coauthors, 2021: Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring. Atmos. Chem. Phys., 21, 15861–15881, https://doi.org/10.5194/acp-21-15861-2021.
Ohneiser, K., and Coauthors, 2021: The unexpected smoke layer in the high Arctic winter stratosphere during MOSAiC 2019–2020. Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021.
Olonscheck, D., T. Mauritsen, and D. Notz, 2019: Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci., 12, 430–434, https://doi.org/10.1038/s41561-019-0363-1.
Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic–cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15787, https://doi.org/10.3402/polar.v30i0.15787.
Paţilea, C., G. Heygster, M. Huntemann, and G. Spreen, 2019: Combined SMAP–SMOS thin sea ice thickness retrieval. Cryosphere, 13, 675–691, https://doi.org/10.5194/tc-13-675-2019.
Pefanis, V., S. N. Losa, M. Losch, M. A. Janout, and A. Bracher, 2020: Amplified Arctic surface warming and sea ice loss due to phytoplankton and colored dissolved material. Geophys. Res. Lett., 47, e2020GL088795, https://doi.org/10.1029/2020GL088795.
Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181–184, https://doi.org/10.1038/ngeo2071.
Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289–303, https://doi.org/10.1007/s00382-013-1964-9.
Pithan, F., and Coauthors, 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci., 11, 805–812, https://doi.org/10.1038/s41561-018-0234-1.
Pohl, C., L. Istomina, S. Tietsche, E. Jäkel, J. Stapf, G. Spreen, and G. Heygster, 2020: Broadband albedo of Arctic sea ice from MERIS optical data. Cryosphere, 14, 165–182, https://doi.org/10.5194/tc-14-165-2020.
Polyakov, I. V., and Coauthors, 2017: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285–291, https://doi.org/10.1126/science.aai8204.
Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29.
Rabe, B., and Coauthors, 2022: Overview of the MOSAiC expedition: Physical oceanography. Elementa, 10, 00062, https://doi.org/10.1525/elementa.2021.00062.
Radovan, A., S. Crewell, E. M. Knudsen, and A. Rinke, 2019: Environmental conditions for polar low formation and development over the Nordic seas: Study of January cases based on the Arctic system reanalysis. Tellus, 71A, 1618131, https://doi.org/10.1080/16000870.2019.1618131.
Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett., 12, 094006, https://doi.org/10.1088/1748-9326/aa7def.
Rinke, A., E. Knudsen, D. Mewes, W. Dorn, D. Handorf, K. Dethloff, and J. C. Moore, 2019a: Arctic summer sea-ice melt and related atmospheric conditions in coupled regional climate model simulations and observations. J. Geophys. Res. Atmos., 124, 6027–6039, https://doi.org/10.1029/2018JD030207.
Rinke, A., and Coauthors, 2019b: Trends of vertically integrated water vapor over the Arctic during 1979–2016: Consistent moistening all over? J. Climate, 32, 6097–6116, https://doi.org/10.1175/JCLI-D-19-0092.1.
Ritter, C., and Coauthors, 2018: Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015. Tellus, 70B, 1539618, https://doi.org/10.1080/16000889.2018.1539618.
Romanowsky, E., and Coauthors, 2019: The role of stratospheric ozone for Arctic-midlatitude linkages. Sci. Rep., 9, 7962, https://doi.org/10.1038/s41598-019-43823-1.
Rostosky, P., G. Spreen, S. L. Farrell, T. Frost, G. Heygster, and C. Melsheimer, 2018: Snow depth retrieval on Arctic sea ice from passive microwave radiometers—Improvements and extensions to multiyear ice using lower frequencies.J. Geophys. Res. Oceans, 123, 7120–7138, https://doi.org/10.1029/2018JC014028.
Rostosky, P., G. Spreen, S. Gerland, M. Huntemann, and M. Mech, 2020: Modeling the microwave emission of snow on Arctic sea ice for estimating the uncertainty of satellite retrievals. J. Geophys. Res. Oceans, 125, e2019JC015465, https://doi.org/10.1029/2019JC015465.
Rozanov, V. V., T. Dinter, A. V. Rozanov, A. Wolanin, A. Bracher, and J. P. Burrows, 2017: Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN. J. Quant. Spectrosc. Radiat. Transfer, 194, 65–85, https://doi.org/10.1016/j.jqsrt.2017.03.009.
Ruiz-Donoso, E., and Coauthors, 2020: Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event. Atmos. Chem. Phys., 20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020.
Rutz, J. J., and Coauthors, 2019: The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13777–13802, https://doi.org/10.1029/2019JD030936.
Sand, M., and Coauthors, 2017: Aerosols at the poles: An AeroCom phase II multi-model evaluation. Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017.
Scarlat, R. C., G. Heygster, and L. T. Pedersen, 2017: Experiences with an optimal estimation algorithm for surface and atmospheric parameter retrieval from passive microwave data in the Arctic. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 3934–3947, https://doi.org/10.1109/JSTARS.2017.2739858.
Scarlat, R. C., G. Spreen, G. Heygster, M. Huntemann, C. Paţilea, L. T. Pedersen, andR. Saldo, 2020: Sea ice and atmospheric parameter retrieval from satellite microwave radiometers: Synergy of AMSR2 and SMOS compared with the CIMR candidate mission. J. Geophys. Res. Oceans, 125, e2019JC015749, https://doi.org/10.1029/2019JC015749.
Schacht, J., and Coauthors, 2019: The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic. Atmos. Chem. Phys., 19, 11159–11183, https://doi.org/10.5194/acp-19-11159-2019.
Schemann, V., and K. Ebell, 2020: Simulation of mixed-phase clouds with the ICON large-eddy model in the complex Arctic environment around Ny-Ålesund. Atmos. Chem. Phys., 20, 475–485, https://doi.org/10.5194/acp-20-475-2020.
Schmale, J., P. Zieger, and A. M. L. Ekman, 2021: Aerosols in current and future Arctic climate. Nat. Climate Change, 11, 95–105, https://doi.org/10.1038/s41558-020-00969-5.
Schneider, T., and Coauthors, 2022: Sensitivity to changes in the surface-layer turbulence parameterization for stable conditions in winter: A case study with a regional climate model over the Arctic. Atmos. Sci. Lett., 23, e1066, https://doi.org/10.1002/asl.1066.
Schoger, S. Y., D. Moisseev, A. von Lerber, S. Crewell, and K. Ebell, 2021: Snowfall-rate retrieval for K- and W-band radar measurements designed in Hyytiälä, Finland, and tested at Ny-Ålesund, Svalbard, Norway. J. Appl. Meteor. Climatol., 60, 273–289, https://doi.org/10.1175/JAMC-D-20-0095.1.
Schulz, H., and Coauthors, 2019: High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmos. Chem. Phys., 19, 2361–2384, https://doi.org/10.5194/acp-19-2361-2019.
Screen, J. A., 2021: An ice-free Arctic: What could it mean for European weather? Weather, 76, 327–328, https://doi.org/10.1002/wea.4069.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, https://doi.org/10.1038/nature09051.
Sedlar, J., and Coauthors, 2020: Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. J. Geophys. Res. Atmos., 125, e2019JD031783, https://doi.org/10.1029/2019JD031783.
Sellers, W. D., 1969: A global climatic model based on the energy balance of the Earth-atmosphere system. J. Appl. Meteor., 8, 392–400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.
Seo, S., A. Richter, A.-M. Blechschmidt, I. Bougoudis, and J. P. Burrows, 2019: First high resolution BrO column retrievals from TROPOMI. Atmos. Meas. Tech., 12, 2913–2932, https://doi.org/10.5194/amt-12-2913-2019.
Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y.
Serreze, M. C., and R. C. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004.
Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616–628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.
Shupe, M. D., and Coauthors, 2022: Overview of the MOSAiC expedition: Atmosphere. Elementa, 10, 00060, https://doi.org/10.1525/elementa.2021.00060.
Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019.
Smith, D. M., and Coauthors, 2022: Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nat. Commun., 13, 727, https://doi.org/10.1038/s41467-022-28283-y.
Soppa, M. A., and Coauthors, 2019: Assessing the influence of water constituents on the radiative heating of Laptev Sea shelf waters. Front. Mar. Sci., 6, 221, https://doi.org/10.3389/fmars.2019.00221.
Spreen, G., S. Kern, D. Stammer, and E. Hansen, 2009: Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophys. Res. Lett., 36, L19502, https://doi.org/10.1029/2009GL039591.
Spreen, G., L. de Steur, D. Divine, S. Geland, E. Hansen, and R. Kwok, 2020: Arctic sea ice volume export through Fram Strait from 1992 to 2014. J. Geophys. Res. Oceans, 125, e2019JC016039, https://doi.org/10.1029/2019JC016039.
Stapf, J., 2021: Influence of surface and atmospheric thermodynamic properties on the cloud radiative forcing and radiative energy budget in the Arctic. Ph.D. thesis, Leipzig University, 132 pp.
Stapf, J., A. Ehrlich, E. Jäkel, C. Lüpkes, and M. Wendisch, 2020: Reassessment of shortwave surface cloud radiative forcing in the Arctic: Consideration of surface-albedo–cloud interactions. Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020.
Stapf, J., A. Ehrlich, and M. Wendisch, 2021: Influence of thermodynamic state changes on surface cloud radiative forcing in the Arctic: A comparison of two approaches using data from AFLUX and SHEBA. J. Geophys. Res. Atmos., 126, e2020JD033589, https://doi.org/10.1029/2020JD033589.
Steele, M., and T. Boyd, 1998: Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Oceans, 103, 10419–10435, https://doi.org/10.1029/98JC00580.
Stramler, K., A. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 1747–1762, https://doi.org/10.1175/2010JCLI3817.1.
Sun, B., E. Jäkel, M. Schäfer, and M. Wendisch, 2020: A biased sampling approach to accelerate backward Monte Carlo atmospheric radiative transfer simulations and its application to Arctic heterogeneous cloud and surface conditions. J. Quant. Spectrosc. Radiat. Transfer, 240, 106690, https://doi.org/10.1016/j.jqsrt.2019.106690.
Tan, I., G. Sotiropoulou, P. C. Taylor, L. Zamora, and M. Wendisch, 2021: A review of the factors influencing Arctic mixed-phase clouds: Progress and outlook. Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10508308.1.
Taylor, P. C., M. Cai, A. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013:A decomposition of feedback contributions to polar warming amplification.J. Climate, 26, 7023–7043, https://doi.org/10.1175/JCLI-D-12-00696.1.
Thoman, R. L., J. Richter-Menge, and M. L. Druckenmiller, Eds., 2020: Arctic report card 2020. NOAA Tech. Rep., 143 pp., https://arctic.noaa.gov/Portals/7/ArcticReportCard/Documents/ArcticReportCard_full_report2020.pdf.
Triana-Gómez, A., G. Heygster, C. Melsheimer, and G. Spreen, 2018: Towards a merged total water vapour retrieval from AMSU-B and AMSR-E data in the Arctic region. 2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 1818–1821, https://doi.org/10.1109/IGARSS.2018.8517863.
Triana-Gómez, A., G. Heygster, C. Melsheimer, G. Spreen, M. Negusini, and B. H. Petkov, 2020: Improved water vapour retrieval from AMSU-B and MHS in the Arctic. Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020.
Tsubouchi, T., K. Våge, B. Hansen, K. M. H. Larsen, S. Österhus, C. Johnson,S. Jónsson, and H. Valdimarsson, 2021: Increased ocean heat transport into the Nordic seas and Arctic Ocean over the period 1993–2016. Nat. Climate Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3.
Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255–275, https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.
Viceto, C., I. V. Gorodetskaya, A. Rinke, M. Maturilli, A. Rocha, and S. Crewell, 2022: Atmospheric rivers and associated precipitation patterns during the ACLOUD and PASCAL campaigns near Svalbard (May–June 2017): Case studies using observations, reanalyses, and a regional climate model. Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022.
von Lerber, A., M. Mech, A. Rinke, D. Zhang, M. Lauer, A. Radovan, I. Gorodetskaya, and S. Crewell, 2022: Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic. Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022.
Walbröl, A., and Coauthors, 2022: Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Sci. Data, 9, 534, https://doi.org/10.1038/s41597-022-01504-1.
Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734–2745, https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.
Wendisch, M., and Coauthors, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, 98, https://doi.org/10.1029/2017EO064803.
Wendisch, M., and Coauthors, 2019: The Arctic cloud puzzle: Using ACLOUD/PASCAL multi-platform observations to unravel the role of clouds and aerosol particles in Arctic amplification. Bull. Amer. Meteor. Soc., 100, 841–871, https://doi.org/10.1175/BAMS-D-18-0072.1.
Wendisch, M., D. Handorf, I. Tegen, R. A. J. Neggers, and G. Spreen, 2021: Glimpsing the ins and outs of the Arctic atmospheric cauldron. Eos, 102, https://doi.org/10.1029/2021EO155959.
Wesche, C., D. Steinhage, and U. Nixdorf, 2016: Polar aircraft Polar 5 and Polar 6 operated by the Alfred Wegener Institute. J. Large-Scale Res. Facil., 2, A87, https://doi.org/10.17815/jlsrf-2-153.
Wex, H., and Coauthors, 2019: Annual variability of ice nucleating particle concentrations at different Arctic locations. Atmos. Chem. Phys., 19, 5293–5311, https://doi.org/10.5194/acp-19-5293-2019.
Wille, J. D., and Coauthors, 2021: Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788.
Willis, M. D., and Coauthors, 2019: Aircraft-based measurements of high Arctic springtime aerosol show evidence for vertically varying sources, transport and composition. Atmos. Chem. Phys., 19, 57–76, https://doi.org/10.5194/acp-19-57-2019.
Wohltmann, I., R. Lehmann, and M. Rex, 2017: Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2). Geosci. Model Dev., 10, 2671–2689, https://doi.org/10.5194/gmd-10-2671-2017.
Xi, H., and Coauthors, 2021: Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products. J. Geophys. Res. Oceans, 126, e2020JC017127, https://doi.org/10.1029/2020JC017127.
Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330–347, https://doi.org/10.1175/JAS-D-12-039.1.
Zahn, M., M. Akperov, A. Rinke, F. Feser, and I. I. Mokhov, 2018: Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data. J. Geophys. Res. Atmos., 123, 2737–2751, https://doi.org/10.1002/2017JD027439.
Zanatta, M., and Coauthors, 2018: Effects of mixing state on optical and radiative properties of black carbon in the European Arctic. Atmos. Chem. Phys., 18, 14037–14057, https://doi.org/10.5194/acp-18-14037-2018.
Zanatta, M., A. Herber, Z. Jurányi, O. Eppers, J. Schneider, and J. P. Schwarz, 2021: Technical note: Sea salt interference with black carbon quantification in snow samples using the single particle soot photometer. Atmos. Chem. Phys., 21, 9329–9342, https://doi.org/10.5194/acp-21-9329-2021.
Zeppenfeld, S., M. van Pinxteren, M. Hartmann, A. Bracher, F. Stratmann, andH. Herrmann, 2019: Glucose as a potential chemical marker for ice nucleating activity in Arctic seawater samples. Environ. Sci. Technol., 53, 8747–8756, https://doi.org/10.1021/acs.est.9b01469.
Zeppenfeld, S., M. van Pinxteren, A. Engel, and H. Herrmann, 2020: A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED)—Combined with HPAEC-PAD. Ocean Sci., 16, 817–830, https://doi.org/10.5194/os-16-817-2020.
Zhang, Z., H. Bi, K. Sun, H. Huang, Y. Liu, and L. Yan, 2017: Arctic sea ice volume export through the Fram Strait from combined satellite and model data: 1979–2012. Acta Oceanol. Sin., 36, 44–55, https://doi.org/10.1007/s13131-017-0992-4.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 8690 | 2978 | 279 |
PDF Downloads | 6127 | 1584 | 126 |