Ackerman, S. A., 1997: Remote sensing aerosols using satellite infrared observations. J. Geophys. Res., 102, 17 069–17 079, https://doi.org/10.1029/96JD03066.
Adebiyi, A. A., J. F. Kok, Y. Wang, A. Ito, D. A. Ridley, P. Nabat, and C. Zhao, 2020: Dust Constraints from joint Observational-Modelling-experiMental analysis (DustCOMM): Comparison with measurements and model simulations. Atmos. Chem. Phys., 20, 829–863, https://doi.org/10.5194/acp-20-829-2020.
Ah Sharidah, A., 2021: Identification of airborne bacteria of Saharan dust storm, Kuwait. J. Environ. Sci., 50, 85–95, https://doi.org/10.21608/joese.2021.94509.1010.
Alalam, P., L. Deschutter, A. Al Choueiry, D. Petitprez, and H. Herbin, 2022: Aerosol mineralogical study using laboratory and IASI measurements: Application to East Asian deserts. Remote Sens., 14, 3422, https://doi.org/10.3390/rs14143422.
Albani, S., and Coauthors, 2015: Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives. Climate Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015.
Al-Hemoud, A., M. Al-Sudairawi, S. Neelamanai, A. Naseeb, and W. Behbehani, 2017: Socioeconomic effect of dust storms in Kuwait. Arab. J. Geosci., 10, 18, https://doi.org/10.1007/s12517-016-2816-9.
Al-Hemoud, A., A. Al-Dousari, A. Al-Shatti, A. Al-Khayat, W. Behbehani, and M. Malak, 2018: Health impact assessment associated with exposure to PM10 and dust storms in Kuwait. Atmosphere, 9, 6, https://doi.org/10.3390/atmos9010006.
Al-Hemoud, A., A. Al-Dousari, R. Misak, M. Al-Sudairawi, A. Naseeb, H. Al-Dashti, and N. Al-Dousari, 2019: Economic impact and risk assessment of sand and dust storms (SDS) on the oil and gas industry in Kuwait. Sustainability, 11, 200, https://doi.org/10.3390/su11010200.
AlKheder, S., F. AlRukaibi, A. Aiash, and A. Kader, 2022: Weather risk contribution to traffic accidents types in Gulf Cooperation Council (GCC) countries. Nat. Hazards, 114, 2177–2187, https://doi.org/10.1007/s11069-022-05466-w.
Almansa, A. F., and Coauthors, 2017: A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring. Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017.
Almansa, A. F., and Coauthors, 2020: Column integrated water vapor and aerosol load characterization with the new ZEN-R52 radiometer. Remote Sens., 12, 1424, https://doi.org/10.3390/rs12091424.
Amiridis, V., and Coauthors, 2013: Optimizing CALIPSO Saharan dust retrievals. Atmos. Chem. Phys., 13, 12 089–12 106, https://doi.org/10.5194/acp-13-12089-2013.
Amiridis, V., and Coauthors, 2015: LIVAS: A 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015.
Anderson, R. F., and Coauthors, 2016: How well can we quantify dust deposition to the ocean? Philos. Trans. Royal Soc., A374, 20150285, https://doi.org/10.1098/rsta.2015.0285.
Angulo, G. B., and F. M. González, 2007: African microbes on vacation at the Caribbean (Atmospheric dust and its effects on human health). Rev. Mex. Patol. Clin. Med. Lab., 54, 168–176.
Ansmann, A., P. Seifert, M. Tesche, and U. Wandinger, 2012: Profiling of fine and coarse particle mass: Case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes. Atmos. Chem. Phys., 12, 9399–9415, https://doi.org/10.5194/acp-12-9399-2012.
Ansmann, A., and Coauthors, 2017: Profiling of Saharan dust from the Caribbean to western Africa – Part 2: Shipborne lidar measurements versus forecasts. Atmos. Chem. Phys., 17, 14 987–15 006, https://doi.org/10.5194/acp-17-14987-2017.
Antuña-Marrero, J. C., and Coauthors, 2017: LALINET: The first Latin American–born regional atmospheric observational network. Bull. Amer. Meteor. Soc., 98, 1255–1275, https://doi.org/10.1175/BAMS-D-15-00228.1.
Antuña-Sánchez, J. C., and Coauthors, 2021: Relative sky radiance from multi-exposure all-sky camera images. Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021.
Antuña-Sánchez, J. C., R. Román, J. L. Bosch, C. Toledano, D. Mateos, R. González, V. Cachorro, and Á. de Frutos, 2022: ORION software tool for the geometrical calibration of all-sky cameras. PLOS ONE, 17, e0265959, https://doi.org/10.1371/journal.pone.0265959.
Arnalds, O., 2015: The Soils of Iceland. Springer, 183 pp.
Arnalds, O., H. Olafsson, and P. Dagsson-Waldhauserova, 2014: Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources. Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014.
Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717–725, https://doi.org/10.1175/2007JAMC1689.1.
Atkinson, J., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355–358, https://doi.org/10.1038/nature12278.
Audoux, T., B. Laurent, B. Marticorena, G. Bergametti, J. L. Rajot, A. Féron, and C. Gaimoz, 2022: Wet deposition fluxes of mineral dust and their relation with cold pools in the Central Sahel. Geophys. Res. Lett., 49, e2021GL095005, https://doi.org/10.1029/2021GL095005.
Augustine, J. A., J. J. De Luisi, and C. N. Long, 2000: SURFRAD–A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 2341–2357, https://doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2.
Bachelder, J., and Coauthors, 2020: Chemical and microphysical properties of wind-blown dust near an actively retreating glacier in Yukon, Canada. Aerosol Sci. Technol., 54, 2–20, https://doi.org/10.1080/02786826.2019.1676394.
Baddock, M. C., C. L. Strong, P. S. Murray, and G. H. McTainsh, 2013: Aeolian dust as a transport hazard. Atmos. Environ., 71, 7–14, https://doi.org/10.1016/j.atmosenv.2013.01.042.
Baldo, C., and Coauthors, 2020: Distinct chemical and mineralogical composition of Icelandic dust compared to northern African and Asian dust. Atmos. Chem. Phys., 20, 13 521–13 539, https://doi.org/10.5194/acp-20-13521-2020.
Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007.
Banks, J. R., and H. E. Brindley, 2013: Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sens. Environ., 128, 58–73, https://doi.org/10.1016/j.rse.2012.07.017.
Banks, J. R., H. E. Brindley, C. Flamant, M. J. Garay, N. C. Hsu, O. V. Kalashnikova, L. Klüser, and A. M. Sayer, 2013: Intercomparison of satellite dust retrieval products over the West African Sahara during the Fennec campaign in June 2011. Remote Sens. Environ., 136, 99–116, https://doi.org/10.1016/j.rse.2013.05.003.
Banks, J. R., H. E. Brindley, G. Stenchikov, and K. Schepanski, 2017: Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015). Atmos. Chem. Phys., 17, 3987–4003, https://doi.org/10.5194/acp-17-3987-2017.
Barkan, J., and P. Alpert, 2010: Synoptic analysis of a rare event of Saharan dust reaching the Arctic region. Weather, 65, 208–211, https://doi.org/10.1002/wea.503.
Barnaba, F., N. A. Romero, A. Bolignano, S. Basart, M. Renzi, and M. Stafoggia, 2022: Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. Environ. Int., 163, 107204, https://doi.org/10.1016/j.envint.2022.107204.
Barreto, Á., and Coauthors, 2017: Assessment of nocturnal aerosol optical depth from lunar photometry at the Izaña high mountain observatory. Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017.
Barreto, Á., and Coauthors, 2019: Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmos. Environ., 202, 190–211, https://doi.org/10.1016/j.atmosenv.2019.01.006.
Barreto, Á., and Coauthors, 2020: Spectral aerosol optical depth retrievals by ground-based Fourier transform infrared spectrometry. Remote Sens., 12, 3148, https://doi.org/10.3390/rs12193148.
Barreto, Á., and Coauthors, 2022: Long-term characterisation of the vertical structure of the Saharan Air Layer over the Canary Islands using lidar and radiosonde profiles: Implications for radiative and cloud processes over the subtropical Atlantic Ocean. Atmos. Chem. Phys., 22, 739–763, https://doi.org/10.5194/acp-22-739-2022.
Basart, S., C. Pérez, E. Cuevas, J. M. Baldasano, and G. P. Gobbi, 2009: Aerosol characterization in Northern Africa, northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations. Atmos. Chem. Phys., 9, 8265–8282, https://doi.org/10.5194/acp-9-8265-2009.
Basart, S., C. Pérez, S. Nickovic, E. Cuevas, and J. M. Baldasano, 2012: Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus, 64B, 18539, https://doi.org/10.3402/tellusb.v64i0.18539.
Basart, S., S. Nickovic, E. Terradellas, E. Cuevas, C. Pérez García-Pando, G. García-Castrillo, E. Werner, and F. Benincasa, 2019: The WMO SDS-WAS regional center for Northern Africa, Middle East and Europe. E3S Web Conf., 99, 04008, https://doi.org/10.1051/e3sconf/20199904008.
Batjes, N. H., 1997: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling. Soil Use Manage., 13, 9–16, https://doi.org/10.1111/j.1475-2743.1997.tb00550.x.
Bauer, S. E., Y. Balkanski, M. Schulz, D. A. Hauglustaine, and F. Dentener, 2004: Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison with observations. J. Geophys. Res., 109, 2304, https://doi.org/10.1029/2003JD003868.
Bauer, S. E., M. I. Mishchenko, A. A. Lacis, S. Zhang, J. Perlwitz, and S. M. Metzger, 2007: Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J. Geophys. Res., 112, 6307, https://doi.org/10.1029/2005JD006977.
Behcet, A., M. Bogan, S. Zengin, M. Sabak, S. Kul, M. M. Oktay, H. Bayram, and E. Vuruskan, 2018: Effects of dust storms and climatological factors on mortality and morbidity of cardiovascular diseases admitted to ED. Emerg. Med. Int., 2018, 3758506, https://doi.org/10.1155/2018/3758506.
Benedetti, A., and Coauthors, 2018: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmos. Chem. Phys., 18, 10 615–10 643, https://doi.org/10.5194/acp-18-10615-2018.
Bergin, M. H., C. Ghoroi, D. Dixit, J. J. Schauer, and D. T. Shindell, 2017: Large reductions in solar energy production due to dust and particulate air pollution. Environ. Sci. Technol. Lett., 4, 339–344, https://doi.org/10.1021/acs.estlett.7b00197.
Berjón, A., A. Barreto, Y. Hernández, M. Yela, C. Toledano, and E. Cuevas, 2019: A 10-year characterization of the Saharan Air Layer lidar ratio in the subtropical North Atlantic. Atmos. Chem. Phys., 19, 6331–6349, https://doi.org/10.5194/acp-19-6331-2019.
Betzer, P. R., and Coauthors, 1988: Long-range transport of giant mineral aerosol particles. Nature, 336, 568–571, https://doi.org/10.1038/336568a0.
Bevan, S. L., P. R. J. North, S. O. Los, and W. M. F. Grey, 2012: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sens. Environ., 116, 119–210, https://doi.org/10.1016/j.rse.2011.05.024.
Bhattachan, A., G. S. Okin, J. Zhang, S. Vimal, and D. P. Lettenmaier, 2019: Characterizing the role of wind and dust in traffic accidents in California. GeoHealth, 3, 328–336, https://doi.org/10.1029/2019GH000212.
Binietoglou, I., and Coauthors, 2015: A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmos. Meas. Tech., 8, 3577–3600, https://doi.org/10.5194/amt-8-3577-2015.
Bojdo, N., and A. Filippone, 2019: A simple model to assess the role of dust composition and size on deposition in rotorcraft engines. Aerospace, 6, 44, https://doi.org/10.3390/aerospace6040044.
Bojdo, N., A. Filippone, B. Parkes, and R. Clarkson, 2020: Aircraft engine dust ingestion following sand storms. Aerosp. Sci. Technol., 106, 106072, https://doi.org/10.1016/j.ast.2020.106072.
Boose, Y., and Coauthors, 2016: Ice nucleating particles in the Saharan Air Layer. Atmos. Chem. Phys., 16, 9067–9087, https://doi.org/10.5194/acp-16-9067-2016.
Boose, Y., P. Baloh, M. Plötze, J. Ofner, H. Grothe, B. Sierau, U. Lohmann, and Z. A. Kanji, 2019: Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 2: Deposition nucleation and condensation freezing. Atmos. Chem. Phys., 19, 1059–1076, https://doi.org/10.5194/acp-19-1059-2019.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.
Bullard, J. E., and Coauthors, 2016: High latitude dust in the Earth system. Rev. Geophys., 54, 447–485, https://doi.org/10.1002/2016RG000518.
Burritt, B. E., and A. Hyers, 1981: Evaluation of Arizona’s highway dust warning system. Spec. Paper Geol. Soc. Amer., 186, 281–292, https://doi.org/10.1130/SPE186-p281.
Cadelis, G., R. Tourres, and J. Molinie, 2014: Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French Archipelago of the Caribbean). PLOS ONE, 9, e91136, https://doi.org/10.1371/journal.pone.0091136.
Callewaert, S., S. Vandenbussche, N. Kumps, A. Kylling, X. Shang, M. Komppula, P. Goloub, and M. De Mazière, 2019: The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: Version 4.1 description and evaluation. Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019.
Camino, C., and Coauthors, 2015: An empirical equation to estimate mineral dust concentrations from visibility observations in Northern Africa. Aeolian Res., 16, 55–68, https://doi.org/10.1016/j.aeolia.2014.11.002.
Capelle, V., A. Chédin, M. Pondrom, C. Crevoisier, R. Armante, L. Crepeau, and N. Scott, 2018: Infrared dust aerosol optical depth retrieved daily from IASI and comparison with AERONET over the period 2007–2016. Remote Sens. Environ., 206, 15–32, https://doi.org/10.1016/j.rse.2017.12.008.
Caquineau, S., A. Gaudichet, L. Gomes, M.-C. Magonthier, and B. Chatenet, 1998: Saharan dust: Clay ratio as a relevant tracer to assess the origin of soil‐derived aerosols. Geophys. Res. Lett., 25, 983–986, https://doi.org/10.1029/98GL00569.
Castillo, S., A. Alastuey, E. Cuevas, X. Querol, and A. Avila, 2017: Quantifying dry and wet deposition fluxes in two regions of contrasting African influence: The NE Iberian Peninsula and the Canary Islands. Atmosphere, 8, 86, https://doi.org/10.3390/atmos8050086.
Cazorla, A., and Coauthors, 2017: Near-real-time processing of a ceilometer network assisted with sun-photometer data: Monitoring a dust outbreak over the Iberian Peninsula. Atmos. Chem. Phys., 17, 11 861–11 876, https://doi.org/10.5194/acp-17-11861-2017.
Chabrillat, S., K. Segl, S. Foerster, M. Brell, L. Guanter, A. Schickling, T. Storch, and H.-P. Honold, 2022: EnMAP pre-launch and start phase: Mission update. 2022 IEEE Int. Geoscience and Remote Sensing Symp., Kuala Lumpur, Malaysia, IEEE, 5000–5003, https://doi.org/10.1109/IGARSS46834.2022.9884773.
Chaikovsky, A., and Coauthors, 2016: Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: Development and distribution in EARLINET. Atmos. Meas. Tech., 9, 1181–1205, https://doi.org/10.5194/amt-9-1181-2016.
Chédin, A., V. Capelle, N. A. Scott, and M. C. Todd, 2020: Contribution of IASI to the observation of dust aerosol emissions (morning and nighttime) over the Sahara Desert. J. Geophys. Res. Atmos., 125, e2019JD032014, https://doi.org/10.1029/2019JD032014.
Chen, Q., Y. Yin, H. Jiang, Z. Chu, L. Xue, R. Shi, X. Zhang, and J. Chen, 2019: The roles of mineral dust as cloud condensation nuclei and ice nuclei during the evolution of a hail storm. J. Geophys. Res. Atmos., 124, 14 262–14 284, https://doi.org/10.1029/2019JD031403.
Chou, C., P. Formenti, M. Maille, P. Ausset, G. Helas, M. Harrison, and S. Osborne, 2008: Size distribution, shape, and composition of mineral dust aerosols collected during the African monsoon multidisciplinary analysis special observation period 0: Dust and biomass‐burning experiment field campaign in Niger, January 2006. J. Geophys. Res., 113, D00C10, https://doi.org/10.1029/2008JD009897.
Claquin, T., M. Schulz, and Y. J. Balkanski, 1999: Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res., 104, 22 243–22 256 https://doi.org/10.1029/1999JD900416.
Clarisse, L., C. Clerbaux, B. Franco, J. Hadji-Lazaro, S. Whitburn, A. K. Kopp, D. Hurtmans, and P.-F. Coheur, 2019: A decadal data set of global atmospheric dust retrieved from IASI satellite measurements. J. Geophys. Res. Atmos., 124, 1618–1647, https://doi.org/10.1029/2018JD029701.
Clarkson, R., and H. Simpson, 2017: Maximising airspace use during volcanic eruptions: Matching engine durability against ash cloud occurrence. Proc. Science and Technology Organisation Meeting, Vilnius, Lithuania, S&T Organization, 15–17.
Clerbaux, N., and Coauthors, 2017: CM SAF Aerosol Optical Depth (AOD) data record – Edition 1. Satellite Application Facility on Climate Monitoring, accessed 23 September 2019, https://doi.org/10.5676/EUM_SAF_CM/MSG_AOD/V001.
Comrie, A. C., 2005: Climate factors influencing coccidioidomycosis seasonality and outbreaks. Environ. Health Perspect., 113, 688–692, https://doi.org/10.1289/ehp.7786.
Comrie, A. C., 2021: No consistent link between dust storms and Valley fever (coccid-ioidomycosis). GeoHealth, 5, e2021GH000504, https://doi.org/10.1029/2021GH000504.
Costa, S., A. S. Diniz, and L. L. Kazmerski, 2016: Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renewable Sustainable Energy Rev., 63, 33–61, https://doi.org/10.1016/j.rser.2016.04.059.
Cowie, S., P. Knippertz, and J. H. Marsham, 2014: A climatology of dust emission events from northern Africa using long-term surface observations. Atmos. Chem. Phys., 14, 8579–8597, https://doi.org/10.5194/acp-14-8579-2014.
Creamean, J. M., and Coauthors, 2013: Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science, 339, 1572–1578, https://doi.org/10.1126/science.1227279.
Crusius, J., 2021: Dissolved Fe supply to the Central Gulf of Alaska is inferred to be derived from Alaskan glacial dust that is not resolved by dust transport models. J. Geophys. Res. Biogeosci., 126, e2021JG006323, https://doi.org/10.1029/2021JG006323.
Cuevas, E., and Coauthors, 2015: The MACC-II 2007–2008 reanalysis: Atmospheric dust evaluation and characterization over northern Africa and the Middle East. Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015.
Cuevas, E., and Coauthors, 2019: Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long term (2005–2015) 1-minute synchronous measurements. Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019.
Cuevas, E., and Coauthors, 2021: Desert dust outbreak in the Canary Islands (February 2020): Assessment and impacts. WMO GAW Rep. 259, WWRP 2021-1, 123 pp., https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/GAW_Report_No_259/GAW_Report_No_259.pdf.
Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320–1324, https://doi.org/10.1126/science.1234145.
Cziczo, D. J., L. Ladino, Y. Boose, Z. A. Kanji, P. Kupiszewski, S. Lance, S. Mertes, and H. Wex, 2017: Measurements of ice nucleating particles and ice residuals. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0008.1.
Dagsson-Waldhauserova, P., O. Arnalds, and H. Olafsson, 2013: Long-term frequency and characteristics of dust storm events in northeast Iceland (1949–2011). Atmos. Environ., 77, 117–127, https://doi.org/10.1016/j.atmosenv.2013.04.075.
Dagsson-Waldhauserova, P., O. Arnalds, and H. Olafsson, 2014: Long-term variability of dust events in Iceland. Atmos. Chem. Phys., 14, 13 411–13 422, https://doi.org/10.5194/acp-14-13411-2014.
Dagsson-Waldhauserova, P., O. Arnalds, H. Olafsson, J. Hladil, R. Skala, T. Navrati, L. Chadimova, and O. Meinander, 2015: Snow–dust storm: Unique case study from Iceland, March 6–7, 2013. Aeolian Res., 16, 69–74, https://doi.org/10.1016/j.aeolia.2014.11.001.
Dagsson-Waldhauserova, P., O. Arnalds, H. Olafsson, J. B. Renard, O. Meinander, B. Moroni, and J. Kavan, 2019: High latitude dust (HLD) sources and pathways in polar regions – Antarctica and the Arctic. Geophysical Research Abstracts, Vol. 21, Abstract EGU2019-8574, https://meetingorganizer.copernicus.org/EGU2019/EGU2019-8574.pdf.
Dall’Osto, M., D. C. S. Beddows, R. P. Kinnersley, R. M. Harrison, R. J. Donovan, and M. R. Heal, 2004: Characterization of individual airborne particles by using aerosol time-of-flight mass spectrometry at Mace Head, Ireland. J. Geophys. Res., 109, D21302, https://doi.org/10.1029/2004JD004747.
de Graaf, M., P. Stammes, O. Torres, and R. B. A. Koelemeijer, 2005: Absorbing aerosol index: Sensitivity analysis, application to GOME and comparison with TOMS. J. Geophys. Res., 110, D01201, https://doi.org/10.1029/2004JD005178.
De Longueville, F., P. Ozer, S. Doumbia, and S. Henry, 2013: Desert dust impacts on human health: An alarming worldwide reality and a need for studies in West Africa. Int. J. Biometeor., 57 (1), 1–19, https://doi.org/10.1007/s00484-012-0541-y.
De Mazière, M., and Coauthors, 2018: The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018.
DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, https://doi.org/10.1029/2003GL017410.
Dempsey, M. J., 2014: Forecasting strategies for haboobs: An underreported weather phenomenon. Adv. Meteor., 2014, 904759, https://doi.org/10.1155/2014/904759.
Denjean, C., and Coauthors, 2016: Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. Atmos., 121, 7117–7138, https://doi.org/10.1002/2016JD024783.
Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, 1996: Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res., 101, 22 869–22 889, https://doi.org/10.1029/96JD01818.
Derbyshire, E., 2007: Natural minerogenic dust and human health. Ambio, 36, 73–77, https://doi.org/10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2.
Di Mauro, B., and Coauthors, 2019: Saharan dust events in the European Alps: Role in snowmelt and geochemical characterization. Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019.
Dionisi, D., F. Barnaba, H. Diémoz, L. Di Liberto, and G. P. Gobbi, 2018: A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation. Atmos. Meas. Tech., 11, 6013–6042, https://doi.org/10.5194/amt-11-6013-2018.
Di Tomaso, E., N. A. J. Schutgens, O. Jorba, and C. Pérez García-Pando, 2017: Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0. Geosci. Model Dev., 10, 1107–1129, https://doi.org/10.5194/gmd-10-1107-2017.
Di Tomaso, E., and Coauthors, 2022: The MONARCH high-resolution reanalysis of desert dust aerosol over northern Africa, the Middle East and Europe (2007–2016). Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022.
Doherty, O. M., N. Riemer, and S. Hameed, 2008: Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. J. Geophys. Res., 113, D07211, https://doi.org/10.1029/2007JD009171.
Dominguez-Rodriguez, A., and Coauthors, 2020: Saharan dust events in the dust belt-Canary Islands-and the observed association with in-hospital mortality of patients with heart failure. J. Clin. Med., 9, 376, https://doi.org/10.3390/jcm9020376.
Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
Dubovik, O., and Coauthors, 2014: GRASP: A versatile algorithm for characterizing the atmosphere. SPIE Newsroom, 19 September, https://doi.org/10.1117/2.1201408.005558.
Dumont, M., L. Arnaud, G. Picard, Q. Libois, Y. Lejeune, P. Nabat, D. Voisin, and S. Morin, 2017: In situ continuous visible and near-infrared spectroscopy of an alpine snowpack. Cryosphere, 11, 1091–1110, https://doi.org/10.5194/tc-11-1091-2017.
Dumont, M., F. Tuzet, S. Gascoin, G. Picard, S. Kutuzov, M. Lafaysse, B. Cluzet, R. Nheili, T. H. Painter, 2020: Accelerated snow melt in the Russian Caucasus mountains after the Saharan dust outbreak in March 2018. J. Geophys. Res. Earth Surf., 125, e2020JF005641, https://doi.org/10.1029/2020JF005641.
Eagan, R. C., P. V. Hobbs, and L. F. Radke, 1974: Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires. J. Appl. Meteor., 13, 553–557, https://doi.org/10.1175/1520-0450(1974)013<0553:MOCCNA>2.0.CO;2.
El-Askary, H., N. LaHaye, E. Linstead, W. A. Sprigg, and M. Yacoub, 2017: Remote sensing observation of annual dust cycles and possible causality of Kawasaki disease outbreaks in Japan. Global Cardiol. Sci. Pract., 2017, e201722, https://doi.org/10.21542/gcsp.2017.22.
Engelbrecht, J. P., G. Stenchikov, P. J. Prakash, T. Lersch, A. Anisimov, and I. Shevchenko, 2017: Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain. Atmos. Chem. Phys., 17, 11 467–11 490, https://doi.org/10.5194/acp-17-11467-2017.
ESCAP-APDIM, 2021: Sand and dust storms risk assessment in Asia and the Pacific. Tech. Rep., 113 pp., https://hdl.handle.net/20.500.12870/4452.
Escribano, J., and Coauthors, 2022: Assimilating spaceborne lidar dust extinction can improve dust forecasts. Atmos. Chem. Phys., 22, 535–560, https://doi.org/10.5194/acp-22-535-2022.
Escudero, M., X. Querol, J. Pey, A. Alastuey, F. Ferreira, and E. Cuevas, 2007: Methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos. Environ., 41, 5516–5524, https://doi.org/10.1016/j.atmosenv.2007.04.047.
European Court of Auditors, 2018: Combating desertification in the EU: A growing threat in need of more action. Special Rep. 33, 65 pp., https://doi.org/10.2865/801468.
EUROSTAT, 2020: The 2017 results of the International Comparison Program: China, US and EU are the largest economies in the world. News release 84/2020, 19 May, https://ec.europa.eu/eurostat/documents/2995521/10868691/2-19052020-BP-EN.pdf/bb14f7f9-fc26-8aa1-60d4-7c2b509dda8e.
Fairlie, T. D., D. J. Jacob, J. E. Dibb, B. Alexander, M. A. Avery, A. Van Donkelaar, and L. Zhang, 2010: Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmos. Chem. Phys., 10, 3999–4012, https://doi.org/10.5194/acp-10-3999-2010.
FAO, 1974: Legend. Vol. I, Soil Map of the World (1:5,000,000), UNESCO, 59 pp., http://www.fao.org/3/as360e/as360e.pdf.
Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 4100–4117, https://doi.org/10.1175/1520-0469(1999)056<4100:TIOGCC>2.0.CO;2.
Feuerstein, S., and K. Schepanski, 2019: Identification of dust sources in a Saharan dust hot-spot and their implementation in a dust-emission model. Remote Sens., 11, 4, https://doi.org/10.3390/rs11010004.
Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen, 2013: Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos., 118, 6100–6121, https://doi.org/10.1002/jgrd.50394.
Flamant, C., J. P. Chaboureau, D. J. Parker, C. M. Taylor, J. P. Cammas, O. Bock, and F. Timouk, 2007: Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African monsoon. Quart. J. Roy. Meteor. Soc., 133, 1175–1189, https://doi.org/10.1002/qj.97.
Flemming, J., and Coauthors, 2017: The CAMS interim reanalysis of carbon monoxide, ozone and aerosol for 2003–2015. Atmos. Chem. Phys., 17, 1945–1983, https://doi.org/10.5194/acp-17-1945-2017.
Formenti, P., and M. Wendisch, 2008: Combining upcoming satellite missions and aircraft activities: Future challenges for the EUFAR fleet. Bull. Amer. Meteor. Soc., 89, 385–388, https://doi.org/10.1175/BAMS-89-3-385.
Formenti, P., and Coauthors, 2008: Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res., 113, D00C13, https://doi.org/10.1029/2008JD009903.
Formenti, P., and Coauthors, 2011: Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys., 11, 8231–8256, https://doi.org/10.5194/acp-11-8231-2011.
Formenti, P., and Coauthors, 2019: The aerosols, radiation and clouds in southern Africa field campaign in Namibia: Overview, illustrative observations, and way forward. Bull. Amer. Meteor. Soc., 100, 1277–1298, https://doi.org/10.1175/BAMS-D-17-0278.1.
Fountoulakis, I., and Coauthors, 2021: Effects of aerosols and clouds on the levels of surface solar radiation and solar energy in Cyprus. Remote Sens., 13, 2319, https://doi.org/10.3390/rs13122319.
Freudenthaler, V., and Coauthors, 2009: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus, 61B, 165–179, https://doi.org/10.1111/j.1600-0889.2008.00396.x.
Frey, M., and Coauthors, 2019: Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech., 12, 1513–1530, https://doi.org/10.5194/amt-12-1513-2019.
Furger, M., and Coauthors, 2017: Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmos. Meas. Tech., 10, 2061–2076, https://doi.org/10.5194/amt-10-2061-2017.
Furger, M., P. Rai, J. G. Slowik, J. Cao, S. Visser, U. Baltensperger, and A. S. H. Prévôt, 2020: Automated alternating sampling of PM10 and PM2.5 with an online XRF spectrometer. Atmos. Environ., 5, 100065, https://doi.org/10.1016/j.aeaoa.2020.100065.
Gallisai, R., F. Peters, G. Volpe, S. Basart, and J. M. Baldasano, 2014: Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales. PLOS ONE, 9, e110762, https://doi.org/10.1371/journal.pone.0110762.
Gama, C., C. Pio, A. Monteiro, M. Russo, A. P. Fernandes, C. Borrego, J. M. Baldasano, and O. Tchepel, 2020: Comparison of methodologies for assessing desert dust contribution to regional PM10 and PM2.5 levels: A one-year study over Portugal. Atmosphere, 11, 134, https://doi.org/10.3390/atmos11020134.
García, R. D., and Coauthors, 2018: Comparison of observed and modeled cloud-free longwave downward radiation (2010–2016) at the high mountain BSRN Izaña station. Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018.
Garfin, G., A. Jardine, R. Merideth, M. Black, and S. LeRoy, 2013: Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. Island Press, 482 pp.
Gasch, P., D. Rieger, C. Walter, P. Khain, Y. Levi, P. Knippertz, and B. Vogel, 2017: Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean. Atmos. Chem. Phys., 17, 13 573–13 604, https://doi.org/10.5194/acp-17-13573-2017.
Gassó, S., and O. Torres, 2019: Temporal characterization of dust activity in the Central Patagonia desert (years 1964–2017). J. Geophys. Res. Atmos., 124, 3417–3434, https://doi.org/10.1029/2018JD030209.
Gautam, R., N. C. Hsu, W. K. M. Lau, and T. J. Yasunari, 2013: Satellite observations of desert dust‐induced Himalayan snow darkening. Geophys. Res. Lett., 40, 988–993, https://doi.org/10.1002/grl.50226.
Gavrouzou, M., N. Hatzianastassiou, A. Gkikas, C. J. Lolis, and N. Mihalopoulos, 2021: A climatological assessment of intense desert dust episodes over the broader Mediterranean Basin based on satellite data. Remote Sens., 13, 2895, https://doi.org/10.3390/rs13152895.
GAW, 2007: Plan for the implementation of the GAW aerosol lidar observation network GALION. GAW Rep. 178, WMO/TD 1443, 52 pp., https://www.wmo.int/pages/prog/arep/gaw/documents/gaw178-galion-27-Oct.pdf.
Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Georgoulias, A. K., and Coauthors, 2018: A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations. Atmos. Chem. Phys., 18, 8601–8620, https://doi.org/10.5194/acp-18-8601-2018.
Giannadaki, D., A. Pozzer, and J. Lelieveld, 2014: Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys., 14, 957–968, https://doi.org/10.5194/acp-14-957-2014.
Gibbons, M., Q. Min, and J. Fan, 2018: Investigating the impacts of Saharan dust on tropical deep convection using spectral bin microphysics. Atmos. Chem. Phys., 18, 12 161–12 184, https://doi.org/10.5194/acp-18-12161-2018.
Giles, D. M., and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) version 3 database – Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019.
Ginoux, P., 2017: Warming or cooling dust? Nat. Geosci., 10, 246–248, https://doi.org/10.1038/ngeo2923.
Giordano, M. R., C. Malings, S. N. Pandis, A. A. Presto, V. F. McNeill, D. M. Westervelt, M. Beekmann, and R. Subramanian, 2021: From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci., 158, 105833, https://doi.org/10.1016/j.jaerosci.2021.105833.
Gkikas, A., N. Hatzianastassiou, N. Mihalopoulos, and O. Torres, 2016: Characterization of aerosol episodes in the greater Mediterranean Sea area from satellite observations (2000–2007). Atmos. Environ., 128, 286–304, https://doi.org/10.1016/j.atmosenv.2015.11.056.
Gkikas, A., and Coauthors, 2021: ModIs Dust AeroSol (MIDAS): A global fine resolution dust optical depth dataset. Atmos. Meas. Tech., 14, 309–334, https://doi.org/10.5194/amt-14-309-2021.
Gkikas, A., and Coauthors, 2022: Quantification of the dust optical depth across spatiotemporal scales with the MIDAS global dataset (2003–2017). Atmos. Chem. Phys., 22, 3553–3578, https://doi.org/10.5194/acp-22-3553-2022.
Gkikas, A., and Coauthors, 2023: First assessment of Aeolus Standard Correct Algorithm particle backscatter coefficient retrievals in the eastern Mediterranean. Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023.
Gliß, J., and Coauthors, 2021: AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground-and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021.
Go, S., and Coauthors, 2022: Inferring iron-oxide species content in atmospheric mineral dust from DSCOVR EPIC observations. Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022.
Gonçalves Ageitos, M., and Coauthors, 2023: Modeling dust mineralogical composition: Sensitivity to soil mineralogy atlases and their expected climate impacts. Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023.
Goodman, A. L., G. M. Underwood, and V. H. Grassian, 2000: A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles. J. Geophys. Res., 105, 29 053–29 064, https://doi.org/10.1029/2000JD900396.
Goossens, D., and E. Van Kerschaever, 1999: Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy, 66, 277–289, https://doi.org/10.1016/S0038-092X(99)00028-6.
Goudie, A. S., 2014: Desert dust and human health disorders. Environ. Int., 63, 101–113, https://doi.org/10.1016/j.envint.2013.10.011.
Green, R. O., 2018: Global VSWIR imaging spectroscopy and the 2017 decadal survey. 2018 Proc. IEEE Int. Conf. on Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 183–185, https://doi.org/10.1109/IGARSS.2018.8518744.
Green, R. O., 2022: The NASA Earth Venture Instrument, Earth Surface Mineral Dust Source Investigation (EMIT). 2022 IEEE Int. Geoscience and Remote Sensing Symp., Kuala Lumpur, Malaysia, IEEE, 5004–5006, https://doi.org/10.1109/IGARSS46834.2022.9883479.
Gross, A., S. Tiwari, I. Shtein, and R. Erel, 2021: Direct foliar uptake of phosphorus from desert dust. New Phytol., 230, 2213–2225, https://doi.org/10.1111/nph.17344.
Gross, J. E., W. G. Carlos, C. S. Dela Cruz, P. Harber, and S. Jamil, 2018: Sand and dust storms: Acute exposure and threats to respiratory health. Amer. J. Respir. Crit. Care Med., 198, P13–P14, https://doi.org/10.1164/rccm.1987P13.
Guieu, C., M. D. Loÿe-Pilot, C. Ridame, and C. Thomas, 2002: Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res., 107, 4528, https://doi.org/10.1029/2001JD000582.
Guirado, C., and Coauthors, 2014: Aerosol characterization at the Saharan AERONET site Tamanrasset. Atmos. Chem. Phys., 14, 11 753–11 773, https://doi.org/10.5194/acp-14-11753-2014.
Guma Claramunt, P., 2016: Synergy between Doppler radar and Raman lidar for aerosol investigation. Ph.D. dissertation, University of Basilicata, 177 pp.
Hanrieder, N., A. Ghennioui, A. Alami Merrouni, S. Wilbert, F. Wiesinger, M. Sengupta, L. Zarzalejo, and A. Schade, 2019: Atmospheric transmittance model validation for CSP tower plants. Remote Sens., 11, 1083, https://doi.org/10.3390/rs11091083.
Harrison, A. D., K. Lever, A. Sanchez-Marroquin, M. A. Holden, T. F. Whale, M. D. Tarn, J. B. McQuaid, and B. J. Murray, 2019: The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmos. Chem. Phys., 19, 11 343–11 361, https://doi.org/10.5194/acp-19-11343-2019.
Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543, https://doi.org/10.1029/1999RG000078.
Hector, R. F., and R. Laniado-Laborin, 2005: Coccidioidomycosis – A fungal disease of the Americas. PLOS Med., 2, e2, https://doi.org/10.1371/journal.pmed.0020002.
Herman, J. R., P. K. Bhartia, O. Torres, N. C. Hsu, C. J. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data. J. Geophys. Res., 102, 16 911–16 923, https://doi.org/10.1029/96JD03680.
Hirtl, M., and Coauthors, 2020: A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation. Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020.
Hladil, J., and Coauthors, 2008: An anomalous atmospheric dust deposition event over Central Europe, 24 March 2007, and fingerprinting of the SE Ukrainian source. Bull. Geosci., 83, 175–206, https://doi.org/10.3140/bull.geosci.2008.02.175.
Hojan, M., M. Rurek, M. Więcław, and A. Krupa, 2019: Effects of extreme dust storm in agricultural areas (Poland, the Greater Lowland). Geosciences, 9, 106, https://doi.org/10.3390/geosciences9030106.
Holben, B. N., and Coauthors, 1998: AERONET – A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5.
Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012.
Hsu, N. C., S.-C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067.
Hsu, N. C., R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben, 2012: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012.
Hsu, N. C., M.-J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S.-C. Tsay, 2013: Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712.
Ilić, L., and Coauthors, 2022: Mineralogy sensitive immersion freezing parameterization in DREAM. J. Geophys. Res. Atmos., 127, e2021JD035093, https://doi.org/10.1029/2021JD035093.
Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1.
Illingworth, A. J., and Coauthors, 2019: How can existing ground-based profiling instruments improve European weather forecasts? Bull. Amer. Meteor. Soc., 100, 605–619, https://doi.org/10.1175/BAMS-D-17-0231.1.
Inness, A., and Coauthors, 2019: The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019.
Ito, A., and Z. Shi, 2016: Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016.
Jemmett‐Smith, B. C., J. H. Marsham, P. Knippertz, and C. A. Gilkeson, 2015: Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett., 42, 1275–1282, https://doi.org/10.1002/2015GL063078.
Jeong, G. Y., and E. P. Achterberg, 2014: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys., 14, 12 415–12 428, https://doi.org/10.5194/acp-14-12415-2014.
Jiang, H. J., L. Lu, and K. Sun, 2011: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ., 45, 4299–4304, https://doi.org/10.1016/j.atmosenv.2011.04.084.
Jiang, J. H., H. Su, L. Huang, Y. Wang, S. Massie, B. Zhao, A. Omar, and Z. Wang, 2018: Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun., 9, 3874, https://doi.org/10.1038/s41467-018-06280-4.
Jickells, T. D., and Coauthors, 2005: Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 67–71, https://doi.org/10.1126/science.1105959.
Journet, E., Y. Balkanski, and S. P. Harrison, 2014: A new data set of soil mineralogy for dust-cycle modelling. Atmos. Chem. Phys., 14, 3801–3816, https://doi.org/10.5194/acp-14-3801-2014.
Kahn, R. A., B. J. Gaitley, M. J. Garay, D. J. Diner, T. F. Eck, A. Smirnov, and B. N. Holben, 2010: Multiangle imaging spectroradiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res., 115, D23209, https://doi.org/10.1029/2010JD014601.
Kandler, K., and Coauthors, 2009: Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, 61B, 32–50, https://doi.org/10.1111/j.1600-0889.2008.00385.x.
Kandler, K., and Coauthors, 2011: Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Particle chemistry, shape, mixing state and complex refractive index. Tellus, 63B, 475–496, https://doi.org/10.1111/j.1600-0889.2011.00550.x.
Kanitz, T., and Coauthors, 2019: Aeolus first light: First glimpse. Proc. SPIE, 11180, 111801R, https://doi.org/10.1117/12.2535982.
Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Kräme, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.
Karanasiou, A., N. Moreno, T. Moreno, M. Viana, F. de Leeuw, and X. Querol, 2012: Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environ. Int., 47, 107–114, https://doi.org/10.1016/j.envint.2012.06.012.
Karydis, V. A., A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld, 2016: Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016.
Karydis, V. A., A. P. Tsimpidi, S. Bacer, A. Pozzer, A. Nenes, and J. Lelieveld, 2017: Global impact of mineral dust on cloud droplet number concentration. Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017.
Kaufmann, L. C., 2016: Ice nucleation efficiency of natural dust samples in the immersion mode. Atmos. Chem. Phys., 16, 11 177–11 206, https://doi.org/10.5194/acp-16-11177-2016.
Kawai, K., H. Matsui, and Y. Tobo, 2021: High potential of Asian dust to act as ice nucleating particles in mixed-phase clouds simulated with a global aerosol-climate model. J. Geophys. Res. Atmos., 126, e2020JD034263, https://doi.org/10.1029/2020JD034263.
Kazadzis, S., N. Kouremeti, S. Nyeki, J. Gröbner, and C. Wehrli, 2018a: The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements. Geosci. Instrum. Methods Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018.
Kazadzis, S., and Coauthors, 2018b: Results from the fourth WMO filter radiometer comparison for aerosol optical depth measurements. Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018.
Kezoudi, M., and Coauthors, 2021: The Unmanned Systems Research Laboratory (USRL): A new facility for UAV-based atmospheric observations. Atmosphere, 12, 1042, https://doi.org/10.3390/atmos12081042.
Klaver, A., and Coauthors, 2011: Physico-chemical and optical properties of Sahelian and Saharan mineral dust: In situ measurements during the GERBILS campaign. Quart. J. Roy. Meteor. Soc., 137, 1193–1210, https://doi.org/10.1002/qj.889.
Klose, M., Y. Shao, M. K. Karremann, and A. H. Fink, 2010: Sahel dust zone and synoptic background. Geophys. Res. Lett., 37, L09802, https://doi.org/10.1029/2010GL042816.
Klose, M., T. E. Gill, N. P. Webb, and J. W. V. Zee, 2017: Field sampling of loose erodible material: A new method to sample the full particle-size spectrum. Aeolian Res., 28, 83–90, https://doi.org/10.1016/j.aeolia.2017.08.003.
Klose, M., and Coauthors, 2021: Mineral dust cycle in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) version 2.0. Geosci. Model Dev., 14, 6403–6444, https://doi.org/10.5194/gmd-14-6403-2021.
Klüser, L., P. Kleiber, T. Holzer-Popp, and V. H. Grassian, 2012: Desert dust observation from space – Application of measured mineral component infrared extinction spectra. Atmos. Environ., 54, 419–427, https://doi.org/10.1016/j.atmosenv.2012.02.011.
Klüser, L., J. Banks, D. Martynenko, C. Bergemann, H. Brindley, and T. Holzer-Popp, 2015: Information content of spaceborne hyperspectral infrared observations with respect to mineral dust properties. Remote Sens. Environ., 156, 294–309, https://doi.org/10.1016/j.rse.2014.09.036.
Knippertz, P., and J.-B. W. Stuut, Eds., 2014: Mineral Dust: A Key Player in the Earth System. Springer, 509 pp., https://doi.org/10.1007/978-94-017-8978-3.
Kok, J. F., and Coauthors, 2017: Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci., 10, 274–278, https://doi.org/10.1038/ngeo2912.
Kok, J. F., and Coauthors, 2023: Mineral dust aerosol impacts on global climate and climate change. Nat. Rev. Earth Environ., 4, 71–86, https://doi.org/10.1038/s43017-022-00379-5.
Koren, I., O. Altaratz, L. A. Remer, G. Feingold, J. V. Martins, and R. H. Heiblum, 2012: Aerosol induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci., 5, 118–122, https://doi.org/10.1038/ngeo1364.
Kosmopoulos, P. G., S. Kazadzis, H. El-Askary, M. Taylor, A. Gkikas, E. Proestakis, C. Kontoes, and M. M. El-Khayat, 2018: Earth-observation-based estimation and forecasting of particulate matter impact on solar energy in Egypt. Remote Sens., 10, 1870, https://doi.org/10.3390/rs10121870.
Krueger, B. J., V. H. Grassian, A. Laskin, and J. P. Cowin, 2003: The transformation of solid atmospheric particles into liquid droplets through heterogeneous chemistry: Laboratory insights into the processing of calcium containing mineral dust aerosol in the troposphere. Geophys. Res. Lett., 30, 1148, https://doi.org/10.1029/2002GL016563.
Kuciauskas, A. P., P. Xian, E. J. Hyer, M. I. Oyola, and J. R. Campbell, 2018: Supporting weather forecasters in predicting and monitoring Saharan air layer dust events as they impact the greater Caribbean. Bull. Amer. Meteor. Soc., 99, 259–268, https://doi.org/10.1175/BAMS-D-16-0212.1.
Kutuzov, S., M. Legrand, S. Preunkert, P. Ginot, V. Mikhalenko, K. Shukurov, A. Poliukhov, and P. Toropov, 2019: The Elbrus (Caucasus, Russia) ice core record – Part 2: History of desert dust deposition. Atmos. Chem. Phys., 19, 14 133–14 148, https://doi.org/10.5194/acp-19-14133-2019.
Kylling, A., and Coauthors, 2018: Comparison of dust layer heights from active and passive satellite sensors. Atmos. Meas. Tech., 11, 2911–2936, https://doi.org/10.5194/amt-11-2911-2018.
Lader, G., A. Raman, J. T. Davis, and K. Waters, 2016: Blowing dust and dust storms: One of Arizona’s most underrated weather hazards. NOAA Tech. Memo. NWS-WR 290, 94 pp., https://www.weather.gov/media/wrh/online_publications/TMs/TM-290.pdf.
Laurent, B., and Coauthors, 2015: An automatic collector to monitor insoluble atmospheric deposition: Application for mineral dust deposition. Atmos. Meas. Tech., 8, 2801–2811, https://doi.org/10.5194/amt-8-2801-2015.
Lawrence, C. R., and J. C. Neff, 2009: The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition. Chem. Geol., 257, 46–63, https://doi.org/10.1016/j.chemgeo.2009.02.005.
Le Bolloch, O., S. Guerzoni, and E. Molinaroli, 1996: Atmosphere-ocean mass fluxes at two coastal sites in Sardinia (39–41°N, 8–10°E). The Impact of Desert Dust across the Mediterranean, S. Guerzoni and R. Chester, Eds., Kluwer Academic Publishers, 217–222.
Lekas, T. I., J. Kushta, S. Solomos, and G. Kallos, 2014: Some considerations related to flight in dusty conditions. J. Aerosp. Oper., 3, 45–56, https://doi.org/10.3233/AOP-140043.