Abramov, A., and Coauthors, 2021: Two decades of active layer thickness monitoring in northeastern Asia. Polar Geogr., 44, 186–202, https://doi.org/10.1080/1088937X.2019.1648581.
Alaska Division of Forestry, 2022: Wildfires burn more than 3 million acres in Alaska. https://akfireinfo.com/2022/07/21/wildfires-burn-more-than-3-million-acres-in-alaska/.
Barnes, P. W., and Coauthors, 2019: Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustainability, 2, 569–579, https://doi.org/10.1038/s41893-019-0314-2.
Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013.
Benestad, R. E., and Coauthors, 2022: Global hydro-climatological indicators and changes in the global hydrological cycle and rainfall patterns. PLOS Climate, 1, e0000045, https://doi.org/10.1371/journal.pclm.0000045.
Berner, L. T., and S. J. Goetz, 2022: Satellite observations document trends consistent with a boreal forest biome shift. Global Change Biol., 28, 3275–3292, https://doi.org/10.1111/gcb.16121.
Bernhard, G., and Coauthors, 2015: Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos. Chem. Phys., 15, 7391–7412, https://doi.org/10.5194/acp-15-7391-2015.
Bernhard, G., R. L. McKenzie, K. Lantz, and S. Stierle, 2022: Updated analysis of data from Palmer Station, Antarctica (64°S), and San Diego, California (32°N), confirms large effect of the Antarctic ozone hole on UV radiation. Photochem. Photobiol. Sci., 21, 373–384, https://doi.org/10.1007/s43630-022-00178-3.
Bhartia, P. K., and C. W. Wellemeyer, 2002: TOMS-V8 total O3 algorithm. OMI Algorithm Theoretical Basis Doc. Volume II, NASA Goddard Space Flight Center Tech. Doc. ATBD-OMI-02, 15–31, https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf.
Bhatt, U. S., and Coauthors, 2021: Climate drivers of Arctic tundra variability and change using an indicators framework. Environ. Res. Lett., 16, 055019, https://doi.org/10.1088/1748-9326/abe676.
Blanchard-Wrigglesworth, E., M. Webster, L. Boisvert, C. Parker, and C. Horvat, 2022: Record Arctic cyclone of January 2022: Characteristics, impacts, and predictability. J. Geophys. Res. Atmos., 127, e2022JD037161, https://doi.org/10.1029/2022JD037161.
Bodeker, G. E., and S. Kremser, 2021: Indicators of Antarctic ozone depletion: 1979 to 2019. Atmos. Chem. Phys., 21, 5289–5300, https://doi.org/10.5194/acp-21-5289-2021.
Bodenstein, B., K. Beckman, G. Sheffield, K. Kuletz, C. Van Hemert, B. Berlowski, and V. Shearn-Bochsler, 2015: Avian cholera causes marine bird mortality in the Bering Sea of Alaska. J. Wildl. Dis., 51, 934–937, https://doi.org/10.7589/2014-12-273.
Bodenstein, B., R. J. Dusek, M. M. Smith, C. R. Van Hemert, and R. S. A. Kaler, 2022: USGS National Wildlife Health Center necropsy results to determine cause of illness/death for seabirds collected in Alaska from January 1, 2017 through December 31, 2021. U.S. Geological Survey, accessed 11 July 2023, https://doi.org/10.5066/P9XHBX75.
Box, J. E., and Coauthors, 2019: Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b.
Brady, M. B., and R. Leichenko, 2020: The impacts of coastal erosion on Alaska’s North Slope communities: A co-production assessment of land use damages and risks. Polar Geogr., 43, 259–279, https://doi.org/10.1080/1088937X.2020.1755907.
Brown, J., O. J. Ferrians Jr., J. A. Heginbottom, and E. S. Melnikov, 1997: Circum-Arctic map of permafrost and ground-ice conditions: Map CP-45. U.S. Geological Survey, 1 pp., https://pubs.er.usgs.gov/publication/cp45.
Brown, R., D. Vikhamar Schuler, O. Bulygina, C. Derksen, K. Luojus, L. Mudryk, L. Wang, and D. Yang, 2017: Arctic terrestrial snow cover. ow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic, Monitoring and Assessment Programme, 25–64, www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610.
Brun, E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R. Valette, F. Karbou, and S. Morin, 2013: Simulation of northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeor., 14, 203–219, https://doi.org/10.1175/JHM-D-12-012.1.
Butchart, N., and E. E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 1319–1339, https://doi.org/10.1175/1520-0469(1986)0432.0.CO;2
Cairns, D. K., 1988: Seabirds as indicators of marine food supplies. Biol. Oceanogr., 5, 261–271.
Christensen, T. R., and Coauthors, 2021: Multiple ecosystem effects of extreme weather events in the Arctic. Ecosystems, 24, 122–136, https://doi.org/10.1007/s10021-020-00507-6.
Chylek, P., C. Folland, J. D. Klett, M. Wang, N. Hengartner, G. Lesins, and M. K. Dubey, 2022: Annual mean Arctic amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophys. Res. Lett., 49, e2022GL099371, https://doi.org/10.1029/2022GL099371.
Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on mid-latitude severe winter weather. Nat. Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.
Cohen, J., L. Agel, M. Barlow, C. I. Garfinkel, and I. White, 2021: Arctic change reduces risk of cold extremes—Response. Science, 375, 729–730, https://doi.org/10.1126/science.abn8954.
Crozier, L. G., B. J. Burke, B. E. Chasco, D. L. Widener, and R. W. Zabel, 2021: Climate change threatens Chinook salmon throughout their life cycle. Commun. Biol., 4, 222, https://doi.org/10.1038/s42003-021-01734-w.
Davidson, S. C., and Coauthors, 2020: Ecological insights from three decades of animal movement tracking across a changing Arctic. Science, 370, 712–715, https://doi.org/10.1126/science.abb7080.
Didan, K., 2021a: MODIS/terra vegetation indices 16-day L3 global 500m SIN grid V061 [Data set]. NASA EOSDIS Land Processes DAAC, accessed 27 February 2023, https://doi.org/10.5067/MODIS/MOD13A1.061.
Didan, K., 2021b: MODIS/aqua vegetation indices 16-day L3 global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes DAAC, accessed 27 February 2023, https://doi.org/10.5067/MODIS/MYD13A1.061.
Duffy-Anderson, J. T., and Coauthors, 2019: Responses of the northern Bering Sea and southeastern Bering Sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett., 46, 9833–9842, https://doi.org/10.1029/2019GL083396.
Durocher, M., A. I. Requena, D. H. Burn, and J. Pellerin, 2019: Analysis of trends in annual streamflow to the Arctic Ocean. Hydrol. Processes, 33, 1143–1151, https://doi.org/10.1002/hyp.13392.
EEAP, 2023: Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change. 2022 Assessment Rep., Environmental Effects Assessment Panel, United Nations Environment Programme, 372 pp., https://ozone.unep.org/system/files/documents/EEAP-2022-Assessment-Report-May2023.pdf.
England, M. R., I. Eisenman, N. J. Lutsko, and T. J. W. Wagner, 2021: The recent emergence of Arctic amplification. Geophys. Res. Lett., 48, e2021GL094086, https://doi.org/10.1029/2021GL094086.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017: Sea ice index, version 3. National Snow and Ice Data Center, accessed 27 August 2021, https://doi.org/10.7265/N5K072F8.
Frey, K. E., J. C. Comiso, L. W. Cooper, C. Garcia-Eidell, J. M. Grebmeier, and L. V. Stock, 2022: Arctic Ocean primary productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2022, M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, Eds., NOAA Tech. Rep. OAR ARC-22-08, 55–65, https://doi.org/10.25923/0je1-te61.
GMAO, 2015: MERRA-2tavg1_2d_lnd_Nx:2d, 1-hourly, time-averaged, single-level, assimilation, land surface diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GESDISC), accessed 13 February 2023, https://doi.org/10.5067/RKPHT8KC1Y1T.
Gohari, A., A. J. Shahrood, S. Ghadimi, M. Alborz, E. R. Patro, B. Klöve, and A. T. Haghighi, 2022: A century of variations in extreme flow across Finnish rivers. Environ. Res. Lett., 17, 124027, https://doi.org/10.1088/1748-9326/aca554.
Heijmans, M. M. P. D., and Coauthors, 2022: Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ., 3, 68–84, https://doi.org/10.1038/s43017-021-00233-0.
Hersbach, H. B., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hiyama, T., H. Park, K. Kobayashi, L. Lebedeva, and D. Gustafsson, 2023: Contribution of summer net precipitation to winter river discharge in permafrost zone of the Lena River basin. J. Hydrol., 616, 128797, https://doi.org/10.1016/j.jhydrol.2022.128797.
Hjort, J., D. Streletskiy, G. Doré, Q. Wu, K. Bjella, and M. Luoto, 2022: Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ., 3, 24–38, https://doi.org/10.1038/s43017-021-00247-8.
Holmes, R. M., and Coauthors, 2013: Climate change impacts on the hydrology and biogeochemistry of Arctic Rivers. Climactic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts, Eds., Wiley, 3–26.
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, 2391 pp.
Irrgang, A. M., and Coauthors, 2022: Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ., 3, 39–54, https://doi.org/10.1038/s43017-021-00232-1.
Isaksen, K., J. Lutz, A. M. Sorensen, O. Godoy, L. Ferrighi, S. Eastwood, and S. Aaboe, 2022: Advances in operational permafrost monitoring on Svalbard and in Norway. Environ. Res. Lett., 17, 095012, https://doi.org/10.1088/1748-9326/ac8e1c.
Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014: Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. IEEE Trans. Geosci. Remote Sens., 52, 7233–7246, https://doi.org/10.1109/TGRS.2014.2310136.
Jones, T., L. Divine, H. Renner, S. Knowles, K. A. Lefebvre, H. K. Burgess, C. Wright, and J. Parrish, 2019: Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PLOS ONE, 14, e0216532, https://doi.org/10.1371/journal.pone.0216532.
Jorgenson, M. T., D. R. N. Brown, C. A. Hiemstra, H. Genet, B. G. Marcot, R. J. Murphy, and T. A. Douglas, 2022: Drivers of historical and projected changes in diverse boreal ecosystems: Fires, thermokarst, riverine dynamics, and humans. Environ. Res. Lett., 17, 045016, https://doi.org/10.1088/1748-9326/ac5c0d.
Kaverin, D., and Coauthors, 2021: Long-term active layer monitoring at CALM sites in the Russian European North. Polar Geogr., 44, 203–216, https://doi.org/10.1080/1088937X.2021.1981476.
Koch, C. W., and Coauthors, 2023: Year-round utilization of sea ice-associated carbon in Arctic ecosystems. Nat. Commun., 14, 1964, https://doi.org/10.1038/s41467-023-37612-8
Kopec, B., X. Feng, F. A. Michel, and E. Posmentier, 2016: Influence of sea ice on Arctic precipitation. Proc. Natl. Acad. Sci. USA, 113, 46–51, https://doi.org/10.1073/pnas.1504633113.
Kusunoki, S., R. Mizuta, and M. Hosaka, 2015: Future changes in precipitation intensity over the Arctic projected by a global atmospheric model with a 60-km grid size. Polar Sci., 9, 277–292, https://doi.org/10.1016/j.polar.2015.08.001.
Landy, J. C., and Coauthors, 2022: A year-round satellite sea-ice thickness record from CryoSat-2. Nature, 609, 517–522, https://doi.org/10.1038/s41586-022-05058-5.
Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019.
Lawrence, Z. D., J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, and E. R. Nash, 2020: The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. J. Geophys Res. Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271.
Lenssen, N. J., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, 6307–6326, https://doi.org/10.1029/2018JD029522.
Liu, S., and Coauthors, 2022: Mechanisms behind the uneven increases in early, mid- and late winter streamflow across four Arctic river basins. J. Hydrol., 606, 127425, https://doi.org/10.1016/j.jhydrol.2021.127425.
Luojus, K., and Coauthors, 2022: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global climate research data package (CRDP) (1979–2020), version 2.0. NERC EDS Centre for Environmental Data Analysis, accessed 8 September 2022, https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494.
Macander, M. J., P. R. Nelson, T. W. Nawrocki, G. V. Frost, K. M. Orndahl, E. C. Palm, A. F. Wells, and S. J. Goetz, 2022: Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environ. Res. Lett., 17, 054042, https://doi.org/10.1088/1748-9326/ac6965.
Magnússon, R. Í., 2021: Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Sci. Total Environ., 782, 146877, https://doi.org/10.1016/j.scitotenv.2021.146877.
Malkova, G., and Coauthors, 2022: Spatial and temporal variability of permafrost in the western part of the Russian Arctic. Energies, 15, 2311, https://doi.org/10.3390/en15072311.
Mallory, C. D., and M. S. Boyce, 2018: Observed and predicted effects of climate change on Arctic caribou and reindeer. Environ. Rev., 26, 13–25, https://doi.org/10.1139/er-2017-0032.
Mamen, J., H. T. T. Tajet, and K. Tunheim, 2022: Klimatologisk månedsoversikt, June 2022. MET Info 6/2022 (in Norwegian). Meteorologisk Institutt, 23 pp., www.met.no/publikasjoner/met-info/met-info-2022.
Mankoff, K. D., A. Solgaard, W. Colgan, A. P. Ahlstrøm, S. A. Khan, and R. S. Fausto, 2020: Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020.
Mankoff, K. D., and Coauthors, 2021: Greenland ice sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021.
Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469–475, https://doi.org/10.1038/nature10556.
Manney, G. L., and Coauthors, 2020: Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett., 47, e2020GL089063, https://doi.org/10.1029/2020GL089063.
McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. Macdonald, 2012: The Arctic Ocean estuary. Estuaries Coasts, 35, 353–368, https://doi.org/10.1007/s12237-010-9357-3.
McCrystall, M., J. Stroeve, M. C. Serreze, B. C. Forbes, and J. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12, 6765, https://doi.org/10.1038/s41467-021-27031-y.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021a: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 4. National Snow and Ice Data Center, accessed 10 September 2022, https://doi.org/10.7265/efmz-2t65.
Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart, 2021b: Near-real-time NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. National Snow and Ice Data Center, accessed 10 September 2022, https://doi.org/10.7265/tgam-yv28.
Mekonnen, Z. A., and Coauthors, 2021: Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett., 16, 053001, https://doi.org/10.1088/1748-9326/abf28b.
Meredith, M., and Coauthors, 2019: Polar regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, 203–320.
Moore, G. W. K., S. E. L. Howell, M. Brady, X. Xu, and K. McNeil, 2021: Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nat. Commun., 12, 1, https://doi.org/10.1038/s41467-020-20314-w.
Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-beam radar sounding combined with mass conservation. Geophys. Res. Lett., 44, 11 051–11 061, https://doi.org/10.1002/2017GL074954.
Mote, T., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.
Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116.
Müller, R., J.-U. Grooß, C. Lemmen, D. Heinze, M. Dameris, and G. Bodeker, 2008: Simple measures of ozone depletion in the polar stratosphere. Atmos. Chem. Phys., 8, 251–264, https://doi.org/10.5194/acp-8-251-2008.
Muñoz Sabater, J., 2019: ERA5-land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 8 September 2022, https://doi.org/10.24381/cds.e2161bac.
Myers-Smith, I. H., and Coauthors, 2020: Complexity revealed in the greening of the Arctic. Nat. Climate Change, 10, 106–117, https://doi.org/10.1038/s41558-019-0688-1.
Nielsen, D. M., P. Pieper, A. Barkhordarian, P. Overduin, T. Ilyina, V. Brovkin, J. Baehr, and M. Dobrynin, 2022: Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Climate Change., 12, 263–270, https://doi.org/10.1038/s41558-022-01281-0.
NOAA, 2022: The Global Climate during El Niño and La Niña. Accessed 21 May 2023, https://psl.noaa.gov/enso/compare/.
Nyland, K. E., N. I. Shiklomanov, D. A. Streletskiy, F. E. Nelson, A. E. Klene, and A. L. Kholodov, 2021: Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra. Polar Geogr., 44, 176–185, https://doi.org/10.1080/1088937X.2021.1988000.
Overland, J. E., 2022: Arctic climate extremes. Atmosphere, 13, 1670, https://doi.org/10.3390/atmos13101670.
Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz, 2013: Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Climate Change, 3, 673–677, https://doi.org/10.1038/nclimate1858.
Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013.
Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173, https://doi.org/10.1126/science.1077445.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2020: Winter Arctic sea ice thickness from ICESat‐2 freeboards. J. Geophys. Res. Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764.
Petty, A. A., N. T. Kurtz, R. Kwok, T. Markus, and T. A. Neumann, 2021: ICESat-2 L4 monthly gridded sea ice thickness, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 9 September, https://doi.org/10.5067/CV6JEXEE31HF.
Petty, A. A., N. Keeney, A. Cabaj, P. Kushner, and M. Bagnardi, 2023: Winter Arctic sea ice thickness from ICESat-2: Upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection. Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023.
Piatt, J. P., and Coauthors, 2020: Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLOS ONE, 15, e0226087, https://doi.org/10.1371/journal.pone.0226087.
Pinzon, J., and C. Tucker, 2014: A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens., 6, 6929–6960, https://doi.org/10.3390/rs6086929.
Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29.
Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3.
Rawlins, M. A., and Coauthors, 2010: Analysis of the Arctic system freshwater cycle intensification: Observations and expectations. J. Climate, 23, 5715–5737, https://doi.org/10.1175/2010JCLI3421.1.
Raynolds, M. K., and Coauthors, 2019: A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ., 232, 111297, https://doi.org/10.1016/j.rse.2019.111297.
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)0152.0.CO;2.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017.
Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), version 1 [r01]. NOAA National Centers for Environmental Information, accessed 15 August 2022, https://doi.org/10.7289/V5N014G9.
Rogers, A., S. P. Serbin, and D. A. Way, 2022: Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. Global Change Biol., 28, 1222–1247, https://doi.org/10.1111/gcb.15958.
Romano, M., H. M. Renner, K. J. Kuletz, J. K. Parrish, T. Jones, H. K. Burgess, D. A. Cushing, and D. Causey, 2020: Die-offs and reproductive failure of murres in the Bering and Chukchi Seas in 2018. Deep-Sea Res. II, 181–182, 104877, https://doi.org/10.1016/j.dsr2.2020.104877.
Romanovsky, V., and Coauthors, 2017: Changing permafrost and its impacts. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic, Monitoring and Assessment Programme, 65–102, www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610.
Ryan, J. C., L. C. Smith, D. van As, S. W. Cooley, M. G. Cooper, L. H. Pitcher, and A. Hubbard, 2019: Greenland ice sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv., 5, eaav3738, https://doi.org/10.1126/sciadv.aav3738.
Schneider, U., P. Finger, E. Rustemeier, M. Ziese, and S. Hänsel, 2022: Global precipitation analysis products of the GPCC. DWD, 17 pp., https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_v2022.pdf.
Schuur, E. A. G., 2020: Permafrost carbon [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S270–S271, https://doi.org/10.1175/BAMS-D-20-0086.1.
SEARCH, and Coauthors, 2022: Consequences of rapid environmental Arctic change for people. Arctic Report Card 2022, M. L. Druckenmiller, R. L. Thoman, and T. A. Moon, Eds., NOAA Tech. Rep. OAR ARC-22-16, 123–129, https://doi.org/10.25923/kgm2-9k50.
Shiklomanov, N. I., D. A. Streletskiy, and F. E. Nelson, 2012: Northern Hemisphere component of the global Circumpolar Active Layer Monitoring (CALM) Program. Proc. 10th Int. Conf. on Permafrost, Vol. 1, Salekhard, Russia, Tyumen Oil and Gas University, 377–382.
Shrestha, R. R., K. E. Bennett, D. L. Peters, and D. Yang, 2021: Hydrologic extremes in Arctic rivers and regions: Historical variability and future perspectives. Arctic Hydrology, Permafrost and Ecosystems, D. Yang and D. L. Kane, Eds., Springer, 187–218, https://doi.org/10.1007/978-3-030-50930-9_7.
Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 2473–2493, https://doi.org/10.1002/jgrd.50188.
Smith, S. L., and Coauthors, 2022a: Permafrost [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S286–S290, https://doi.org/10.1175/BAMS-D-22-0082.1.
Smith, S. L., H. B. O’Neill, K. Isaksen, J. Noetzli, and V. E. Romanovsky, 2022b: The changing thermal state of permafrost. Nat. Rev. Earth Environ., 3, 10–23, https://doi.org/10.1038/s43017-021-00240-1.
Stabeno, P. J., R. L. Thoman, and K. Wood, 2019: Recent warming in the Bering Sea and its impacts on the ecosystem. Arctic Report Card 2019, J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Eds., NOAA Tech. Rep., 81–87, https://arctic.noaa.gov/Portals/7/ArcticReportCard/Documents/ArcticReportCard_full_report2019.pdf.
Strand, S. M., H. H. Christiansen, M. Johansson, J. Akerman, and O. Humlum, 2021: Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic. Permafrost Periglacial. Processes, 32, 47–58, https://doi.org/10.1002/ppp.2088.
Stroh, J. N., G. Panteleev, S. Kirillov, M. Makhotin, and N. Shakhova, 2015: Sea-surface temperature and salinity product comparison against external in situ data in the Arctic Ocean. J. Geophys. Res. Oceans, 120, 7223–7236, https://doi.org/10.1002/2015JC011005.
Tanskanen, A., A. Arola, and J. Kujanpää, 2003: Use of the moving time-window technique to determine surface albedo from the TOMS reflectivity data. Proc. SPIE, 4896, 239–250, https://doi.org/10.1117/12.483407.
Tapley, B. D., and Coauthors, 2019: Contributions of GRACE to understanding climate change. Nat. Climate Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2.
Thoman, R., M. L. Druckenmiller, and T. A. Moon, Eds., 2022: The Arctic [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S257–S306, https://doi.org/10.1175/BAMS-D-22-0082.1.
Timmermans, M.-L., and Z. Labe, 2022: Sea surface temperature [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S268–S270, https://doi.org/10.1175/BAMS-D-22-0082.1.
Tretiyakov, M. V., O. V. Muzhdaba, A. A. Piskun, and R. A. Terekhova, 2022: The state of the Roshydromet Hydrological Observation Network in the mouth areas of RFAZ. Water Resour., 49, 796–807, https://doi.org/10.1134/S0097807822050153.
Tschudi, M., W. N. Meier, and J. S. Stewart, 2019a: Quicklook Arctic weekly EASE-grid sea ice age, version 1 [March, 2021]. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 1 September 2021, https://doi.org/10.5067/2XXGZY3DUGNQ.
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019b: EASE-grid sea ice age, version 4 [March, 1984–2020]. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 1 September 2021, https://doi.org/10.5067/UTAV7490FEPB.
U.S. Geological Survey, 2022: Wildlife Health Information Sharing Partnership–Event Reporting System (WHISPers) on-line database. Accessed October 2022, https://whispers.usgs.gov/home.
U.S. National Ice Center, 2008: IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 1. National Snow and Ice Data Center, accessed 13 August 2022, https://doi.org/10.7265/N52R3PMC.
Van Hemert, C., and Coauthors, 2021: Investigation of algal toxins in a multispecies seabird die-off in the Bering and Chukchi seas. J. Wildl. Dis., 57, 399–407, https://doi.org/10.7589/JWD-D-20-00057.
Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.
Waters, J. W., and Coauthors, 2006: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771.
Wegmann, M., and Coauthors, 2015: Arctic moisture source for Eurasian snow cover variations in autumn. Environ. Res. Lett., 10, 054015, https://doi.org/10.1088/1748-9326/10/5/054015.
Wehrlé, A., J. E. Box, A. M. Anesio, and R. S. Fausto, 2021: Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. Geol. Surv. Denmark Greenl. Bull., 47, https://doi.org/10.34194/geusb.v47.5284.
White, J., J. E. Walsh, and R. L. Thoman Jr., 2021: Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol., 41, 2045–2059, https://doi.org/10.1002/joc.6946.
Whitfield, P. H., P. D. A. Kraaijenbrink, K. R. Shook, and J. W. Pomeroy, 2021: The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window. Hydrol. Earth Syst. Sci., 25, 2513–2541, https://doi.org/10.5194/hess-25-2513-2021.
Will, A., and Coauthors, 2020: The breeding seabird community reveals that recent sea ice loss in the Pacific Arctic does not benefit piscivores and is detrimental to planktivores. Deep-Sea Res., 181–182, 104902, https://doi.org/10.1016/j.dsr2.2020.104902.
WMO, 2022: Scientific assessment of ozone depletion: 2022. WMO GAW Rep. 278, 509 pp., https://csl.noaa.gov/assessments/ozone/2022/.
Wolken, G. J., and Coauthors, 2021: Glacier and permafrost hazards. Arctic Report Card 2021, T. A. Moon, M. L. Druckenmiller, and R. L. Thoman, Eds., NOAA Tech. Rep. OAR ARC-21-13, NOAA, 93–101, https://doi.org/10.25923/v40r-0956.
Yang, D., and Coauthors, 2022: Remote sensing from unoccupied aerial systems: Opportunities to enhance Arctic plant ecology in a changing climate. J. Ecol., 110, 2812–2835, https://doi.org/10.1111/1365-2745.13976.
Ye, H., D. Yang, A. Behrangi, S. L. Stuefer, X. Pan, E. Mekis, Y. Dibike, and J. E. Walsh, 2021: Precipitation characteristics and changes. Arctic Hydrology, Permafrost and Ecosystems, D. Yang and D. L. Kane, Eds., Springer, 25–59, https://doi.org/10.1007/978-3-030-50930-9_2.
Yu, L., and S. Zhong, 2021: Trends in Arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol., 145, 1541–1559, https://doi.org/10.1007/s00704-021-03717-7.
Zona, D., and Coauthors, 2023: Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity. Global Change Biol., 29, 1267–1281, https://doi.org/10.1111/gcb.16487.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 77 | 0 | 0 |
Full Text Views | 21072 | 14548 | 9611 |
PDF Downloads | 3232 | 1908 | 77 |