Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.
Bakker, D. C. E., and Coauthors, 2016: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016.
Bakker, D. C. E., and Coauthors, 2023: Surface Ocean CO2 Atlas Database version 2023 (SOCATv2023) (NCEI Accession 0278913). NOAA/NCEI, accessed 4 January 2024, https://doi.org/10.25921/r7xa-bt92.
Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J. S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 343–14 347, https://doi.org/10.1073/pnas.1201364109.
Barnoud, A., and Coauthors, 2021: Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016. Geophys. Res. Lett., 48, e2021GL092824, https://doi.org/10.1029/2021GL092824.
Beal, L., V. Hormann, R. Lumpkin, and G. Foltz, 2013: The response of the surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr., 43, 2008–2022, https://doi.org/10.1175/JPO-D-13-033.1.
Beckley, B., and Coauthors, 2021: Global mean sea level trend from integrated multi-mission ocean altimeters TOPEX/Poseidon, Jason-1, OSTM/Jason-2, and Jason-3 version 5.1. PODAAC, accessed 29 January 2024, https://doi.org/10.5067/GMSLM-TJ151.
Beckley, B., and Coauthors, 2023: Assessment of reprocessed TOPEX/Jason/Sentinel-6 altimetry: Impact on global mean sea level estimates. 2023 Ocean Surface Topography Science Team Meeting, San Juan, PR, AVISO, https://doi.org/10.24400/527896/a03-2023.3813.
Behrenfeld, M. J., and Coauthors, 2006: Climate-driven trends in contemporary ocean productivity. Nature, 444, 752–755, https://doi.org/10.1038/nature05317.
Behrenfeld, M. J., and Coauthors, 2015: Reevaluating ocean warming impacts on global phytoplankton. Nat. Climate Change, 6, 323–330, https://doi.org/10.1038/nclimate2838.
Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. NOAA Atlas NESDIS 87, 207 pp., https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html.
Brown, S., S. Desai, and C. S. Chae, 2023: Progress on the wet path delay correction: Historical, current and future. 2023 Ocean Surface Topography Science Team Meeting, San Juan, PR, AVISO, https://doi.org/10.24400/527896/a03-2023.3701.
Bryden, H. L., W. E. Johns, B. A. King, G. McCarthy, E. L. McDonagh, B. I. Moat, and D. A. Smeed, 2020: Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Climate, 33, 1677–1689, https://doi.org/10.1175/JCLI-D-19-0323.1.
Caesar, L., S. Rahmstorf, A. Robinson, G. Fuelner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5.
Caesar, L., G. D. McCarthy, D. J. R. Thornalley, N. Cahill, and S. Rahmstorf, 2021: Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci., 14, 118–120, https://doi.org/10.1038/s41561-021-00699-z.
Caínzos, V., A. Hernández-Guerra, G. D. McCarthy, E. L. McDonagh, M. Cubas Armas, and M. D. Pérez-Hernández, 2022: Thirty years of GOSHIP and WOCE data: Atlantic overturning of mass, heat, and freshwater transport. Geophys. Res. Lett., 49, e2021GL096527, https://doi.org/10.1029/2021GL096527.
Carter, B. R., and Coauthors, 2019: Pacific anthropogenic carbon between 1991 and 2017. Global Biogeochem. Cycles, 33, 597–617, https://doi.org/10.1029/2018GB006154.
Chambers, D. P., A. Cazenave, N. Champollion, H. Dieng, W. Llovel, R. Forsberg, K. von Schuckmann, and Y. Wada, 2017: Evaluation of the global mean sea level budget between 1993 and 2014. Surv. Geophys., 38, 309–327, https://doi.org/10.1007/s10712-016-9381-3.
Chen, J., B. Tapley, C. Wilson, A. Cazenave, K. W. Seo, and J. S. Kim, 2020: Global ocean mass change from GRACE and GRACE Follow-On and altimeter and Argo measurements. Geophys. Res. Lett., 47, e2020GL090656, https://doi.org/10.1029/2020GL090656.
Cheng, L., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31, 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1.
Cheng, L., and Coauthors, 2024: New record ocean temperatures and other related climate indicators in 2023. Adv. Atmos. Sci., 41, 1068–1082, https://doi.org/10.1007/s00376-024-3378-5.
Davila, X., G. Gebbie, A. Brakstad, S. K. Lauvset, E. L. McDonagh, J. Schwinger, and A. Olsen, 2022: How is the ocean anthropogenic carbon reservoir filled? Global Biogeochem. Cycles, 36, e2021GB007055, https://doi.org/10.1029/2021GB007055.
de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Ludicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.
Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453.
DeVries, T., and Coauthors, 2023: Magnitude, trends, and variability of the global ocean carbon sink from 1985 to 2018. Global Biogeochem. Cycles, 37, e2023GB007780, https://doi.org/10.1029/2023GB007780.
Dierssen, H. M., 2010: Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proc. Natl. Acad. Sci. USA, 107, 17 073–17 078, https://doi.org/10.1073/pnas.0913800107.
Dlugokencky, E. J., K. W. Thoning, X. Lan, and P. P. Tans, 2021: NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network. Accessed 19 January 2024, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/.
Domingues, R., and Coauthors, 2015: Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by sustained and targeted observations from underwater gliders. Geophys. Res. Lett., 42, 7131–7138, https://doi.org/10.1002/2015GL065378.
Domingues, R., M. Baringer, and G. Goni, 2016: Remote sources for year-to-year changes in the seasonality of the Florida Current transport. J. Geophys. Res. Oceans, 121, 7547–7559, https://doi.org/10.1002/2016JC012070.
Domingues, R., G. Goni, M. Baringer, and D. L. Volkov, 2018: What caused the accelerated sea level changes along the United States East Coast during 2010–2015? Geophys. Res. Lett., 45, 13 367–13 376, https://doi.org/10.1029/2018GL081183.
Dong, S., G. Goni, R. Domingues, F. Bringas, M. Goes, J. Christophersen, and M. Baringer, 2021: Synergy of in situ and satellite ocean observations in determining meridional heat transport in the Atlantic Ocean. J. Geophys. Res. Oceans, 126, e2020JC017073, https://doi.org/10.1029/2020JC017073.
do Rosário Gomes, H., J. Goes, S. Matondkar, E. Buskey, S. Basu, S. Parab, and P. Thoppil, 2014: Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nat. Commun., 5, 4862, https://doi.org/10.1038/ncomms5862.
Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 4342–4362, https://doi.org/10.1175/2010JCLI3377.1.
Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455–458, https://doi.org/10.1126/science.1212222.
Ezer, T., and L. P. Atkinson, 2014: Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future, 2, 362–382, https://doi.org/10.1002/2014EF000252.
Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.
Fasullo, J. T., R. S. Nerem, and B. Hamlington, 2016: Is the detection of accelerated sea level rise imminent? Sci. Rep., 6, 31245, https://doi.org/10.1038/srep31245.
Ffield, A., 2007: Amazon and Orinoco River plumes and NBC rings: Bystanders or participants in hurricane events? J. Climate, 20, 316–333, https://doi.org/10.1175/JCLI3985.1.
Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, 1998: Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237.
Fofonoff, N. P., and E. L. Lewis, 1979: A practical salinity scale. J. Oceanogr. Soc. Japan, 35, 63–64, https://doi.org/10.1007/BF02108283.
Font, J., and Coauthors, 2013: SMOS first data analysis for sea surface salinity determination. Int. J. Remote Sens., 34, 3654–3670, https://doi.org/10.1080/01431161.2012.716541.
Fore, A. G., S. H. Yueh, W. Q. Tang, B. W. Stiles, and A. K. Hayashi, 2016: Combined active/passive retrievals of ocean vector wind and sea surface salinity with SMAP. IEEE Trans. Geosci. Remote Sens., 54, 7396–7404, https://doi.org/10.1109/TGRS.2016.2601486.
Franz, B. A., I. Cetinić, M. Gao, A. Siegel, and T. K. Westberry, 2023: Global ocean phytoplankton [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S184–S188, https://doi.org/10.1175/BAMS-D-23-0076.2.
Franz, B. A., Cetinić, A. Ibrahim, and A. Sayer, 2024: Anomalous trends in global ocean carbon concentrations following the 2022 eruptions of Hunga Tonga-Hunga Ha’apai. Commun. Earth Environ., 5, 247, https://doi.org/10.1038/s43247-024-01421-8.
Friedlingstein, P., and Coauthors, 2023: Global Carbon Budget 2023. Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023.
Fu, Y., F. Li, J. Karstensen, and C. Wang, 2020: A stable Atlantic meridional overturning circulation in a changing North Atlantic Ocean since the 1990s. Sci. Adv., 6, eabc7836, https://doi.org/10.1126/sciadv.abc7836.
Fu, Y., and Coauthors, 2023: Seasonality of the meridional overturning circulation in the subpolar North Atlantic. Commun. Earth Environ., 4, 181, https://doi.org/10.1038/s43247-023-00848-9.
Geider, R. J., H. L. MacIntyre, and T. M. Kana, 1997: Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient limitation and temperature. Mar. Ecol. Prog. Ser., 148, 187–200, https://doi.org/10.3354/meps148187.
Giglio, D., T. Sukianto, and M. Kuusela, 2024: Global ocean heat content anomalies and ocean heat uptake based on mapping Argo data using local Gaussian processes (3.0.0). Accessed 10 February 2024, https://doi.org/10.5281/zenodo.10645137.
Goes, J. I., and Coauthors, 2020: Ecosystem state change in the Arabian Sea fuelled by the recent loss of snow over the Himalayan-Tibetan Plateau region. Sci. Rep., 10, 7422, https://doi.org/10.1038/s41598-020-64360-2.
Goni, G. J., and W. E. Johns, 2003: Synoptic study of warm rings in the North Brazil Current retroflection region using satellite altimetry. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 335–356, https://doi.org/10.1016/S0422-9894(03)80153-8.
Goni, G. J., F. Bringas, and P. N. Di Nezio, 2011: Observed low frequency variability of the Brazil Current front. J. Geophys. Res., 116, C10037, https://doi.org/10.1029/2011JC007198.
Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067.
Gouretski, V., and L. Cheng, 2020: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J. Atmos. Oceanic Technol., 37, 841–855, https://doi.org/10.1175/JTECH-D-19-0205.1.
Graff, J. R., T. K. Westberry, A. J. Milligan, M. B. Brown, G. Dall’Olmo, V. van Dongen-Vogels, K. M. Reifel, and M. J. Behrenfeld, 2015: Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep-Sea Res. I, 102, 16–25, https://doi.org/10.1016/j.dsr.2015.04.006.
Gruber, N., and Coauthors, 2019: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153.
Hakuba, M. Z., T. Frederikse, and F. W. Landerer, 2021: Earth’s energy imbalance from the ocean perspective (2005–2019). Geophys. Res. Lett., 48, e2021GL093624, https://doi.org/10.1029/2021GL093624.
Hamlington, B. D., C. G. Piecuch, J. T. Reager, H. Chandanpurkar, T. Frederikse, R. S. Nerem, J. T. Fasullo, and S.-H. Cheon, 2020: Origin of interannual variability in global mean sea level. Proc. Natl. Acad. Sci. USA, 117, 13 983–13 990, https://doi.org/10.1073/pnas.1922190117.
Hauck, J., and Coauthors, 2023: The Southern Ocean Carbon Cycle 1985–2018: Mean, seasonal cycle, trends, and storage. Global Biogeochem. Cycles, 37, e2023GB007848, https://doi.org/10.1029/2023GB007848.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1.
Hersbach, H., and Coauthors, 2018: ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 2 January 2024, https://doi.org/10.24381/cds.adbb2d47.
Hobbs, W. R., and J. K. Willis, 2012: Midlatitude North Atlantic heat transport: A time series based on satellite and drifter data. J. Geophys. Res., 117, C01008, https://doi.org/10.1029/2011JC007039.
Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014.
Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.
Hu, C., Z. Lee, and B. Franz, 2012: Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res., 117, C01011, https://doi.org/10.1029/2011JC007395.
Hu, C., L. Feng, Z. Lee, B. A. Franz, S. W. Bailey, P. J. Werdell, and C. W. Proctor, 2019: Improving satellite global chlorophyll a data products through algorithm refinement and data recovery. J. Geophys. Res. Oceans, 124, 1524–1543, https://doi.org/10.1029/2019JC014941.
Hu, Z.-Z., B. Huang, J. Zhu, A. Kumar, and M. J. McPhaden, 2019: On the variety of coastal El Niño events. Climate Dyn., 52, 7537–7552, https://doi.org/10.1007/s00382-018-4290-4.
Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4), Part I. Upgrades and intercomparisons. J. Climate, 28, 911–930, https://doi.org/10.1175/JCLI-D-14-00006.1.
Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, B., and Coauthors, 2020: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Climate, 33, 1351–1379, https://doi.org/10.1175/JCLI-D-19-0395.1.
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1.
Hughes, T., and Coauthors, 2017: Global warming and recurrent mass bleaching of corals. Nature, 543, 373–377, https://doi.org/10.1038/nature21707.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.
Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational datasets. SOLA, 13, 163–167, https://doi.org/10.2151/sola.2017-030.
Jiang, S., C. Zhu, Z.-Z. Hu, N. Jiang, and F. Zheng, 2023: Triple-dip La Niñas in 2020-2022: Understanding the role of the annual cycle in the tropical Pacific SST. Environ. Res. Lett., 18, 084002, https://doi.org/10.1088/1748-9326/ace274.
Johns, W. E., S. Elipot, D. A. Smeed, B. Moat, B. King, D. L. Volkov, and R. H. Smith, 2023: Towards two decades of Atlantic Ocean mass and heat transports at 26.5°N. Philos. Trans. Roy. Soc., A381, 20220188, https://doi.org/10.1098/rsta.2022.0188.
Johnson, G. C., and J. M. Lyman, 2012: Sea surface salinity [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S68–S69, https://doi.org/10.1175/2012BAMSStateoftheClimate.1.
Johnson, G. C., J. M. Lyman, J. K. Willis, T. Boyer, J. Antonov, S. A. Good, C. M. Domingues, and N. Bindoff, 2014: Ocean heat content [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S54–S57, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.
Johnson, G. C., and Coauthors, 2015: Ocean heat content [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (7), S64–S66, https://doi.org/10.1175/2015BAMSStateoftheClimate.1.
Johnson, G. C., J. Reagan, J. M. Lyman, T. Boyer, C. Schmid, and R. Locarnini, 2020: Salinity [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S129–S183, https://doi.org/10.1175/BAMS-D-20-0105.1.
Johnson, G. C., and Coauthors, 2022: Ocean heat content [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S153–S157, https://doi.org/10.1175/2022BAMSStateoftheClimate.1.
Kato, S., and Coauthors, 2018: Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1.
Kennedy, J. J., N. A. Rayner, C. P. Atkinson, and R. E. Killick, 2019: An ensemble data set of sea surface temperature change from 1850: The Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res. Atmos., 124, 7719–7763, https://doi.org/10.1029/2018JD029867.
Khatiwala, S., F. Primeau, and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346–349, https://doi.org/10.1038/nature08526.
Kramer, S. J., D. A. Siegel, S. Maritorena, and D. Catlett, 2022: Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales. Remote Sens. Environ., 270, 112879, https://doi.org/10.1016/j.rse.2021.112879.
Kumar, P., B. Hamlington, S. Cheon, W. Han, and P. Thompson, 2020: 20th century multivariate Indian Ocean regional sea level reconstruction. J. Geophys. Res. Oceans, 125, e2020JC016270, https://doi.org/10.1029/2020JC016270.
Landschützer, P., N. Gruber, D. C. E. Bakker, U. Schuster, S. Nakaoka, M. R. Payne, T. P. Sasse, and J. Zeng, 2013: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013.
Landschützer, P., N. Gruber, D. C. E. Bakker, and U. Schuster, 2014: Recent variability of the global ocean carbon sink. Global Biogeochem. Cycles, 28, 927–949, https://doi.org/10.1002/2014GB004853.
Lange, P. K., and Coauthors, 2020: Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts. Opt. Express, 28, 25 682–25 705, https://doi.org/10.1364/OE.398127.
Lauvset, S. K., and Coauthors, 2016: A new global interior ocean mapped climatology: The 1° x 1° GLODAP version 2. Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016.
Lauvset, S. K., A. Brakstad, K. Våge, A. Olsen, E. Jeansson, and K. A. Mork, 2018: Continued warming, salinification and oxygenation of the Greenland Sea gyre. Tellus, 70A (1), 1–9, https://doi.org/10.1080/16000870.2018.1476434.
Leuliette, E. W., and J. K. Willis, 2011: Balancing the sea level budget. Oceanography, 24 (2), 122–129, https://doi.org/10.5670/oceanog.2011.32.
Le Vine, D. M., E. P. Dinnat, G. S. E. Lagerloef, P. de Matthaeis, S. Abraham, C. Utku, and H. Kao, 2014: Aquarius: Status and recent results. Radio Sci., 49, 709–720, https://doi.org/10.1002/2014RS005505.
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.
Li, F., and Coauthors, 2021: Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nat. Commun., 12, 3002, https://doi.org/10.1038/s41467-021-23350-2.
Li, G., L. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020: Increasing ocean stratification over the past half-century. Nat. Climate Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2.
Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016: North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv., 2, e1501588, https://doi.org/10.1126/sciadv.1501588.
Li, X., Z.-Z. Hu, M. J. McPhaden, C. Zhu, and Y. Liu, 2023: Triple-dip La Niñas in 1998–2001 and 2020–2023: Impact of mean state changes. J. Geophys. Res. Atmos., 128, e2023JD038843, https://doi.org/10.1029/2023JD038843.
Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895–918, https://doi.org/10.1175/JCLI-D-17-0208.1.
Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48, e2021GL093047, https://doi.org/10.1029/2021GL093047.
Lozier, M. S., and Coauthors, 2017: Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737–752, https://doi.org/10.1175/BAMS-D-16-0057.1.
Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516–521, https://doi.org/10.1126/science.aau6592.
Lumpkin, R., and S. L. Garzoli, 2005: Near-surface circulation in the tropical Atlantic Ocean. Deep-Sea Res. I, 52, 495–518, https://doi.org/10.1016/j.dsr.2004.09.001.
Lumpkin, R., and S. L. Garzoli, 2011: Interannual to decadal changes in the western South Atlantic’s surface circulation. J. Geophys. Res., 116, C01014, https://doi.org/10.1029/2010JC006285.
Lumpkin, R., G. Goni, and K. Dohan, 2012: Surface currents [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S75–S78, https://doi.org/10.1175/2012BAMSStateoftheClimate.1.
Lumpkin, R., F. Bringas, G. Goni, and B. Qiu, 2023: Surface currents [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S177–S180, https://doi.org/10.1175/BAMS-D-23-0076.2.
Lyman, J. M., and G. C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Climate, 27, 1945–1957, https://doi.org/10.1175/JCLI-D-12-00752.1.
Lyman, J. M., and G. C. Johnson, 2023: Global high-resolution random forest regression maps of ocean heat content anomalies using in situ and satellite data. J. Atmos. Oceanic Technol., 40, 575–586, https://doi.org/10.1175/JTECH-D-22-0058.1.
Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 35–44, https://doi.org/10.1023/A:1015820616384.
Maritorena, S., O. Hembise Fanton d’Andon, A. Mangin, and D. A. Siegel, 2010: Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues. Remote Sens. Environ., 114, 1791–1804, https://doi.org/10.1016/j.rse.2010.04.002.
Marti, F., and Coauthors, 2022: Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022.
McCarthy, G., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91–111, https://doi.org/10.1016/j.pocean.2014.10.006.
McKinna, L. I. W., P. J. Werdell, and C. W. Proctor, 2016: Implementation of an analytical Raman scattering correction for satellite ocean-color processing. Opt. Express, 24, A1123–A1137, https://doi.org/10.1364/OE.24.0A1123.
Moat, B. I., and Coauthors, 2020: Pending recovery in the strength of the meridional overturning circulation at 26°N. Ocean Sci., 16, 863–874, https://doi.org/10.5194/os-16-863-2020.
Moat, B. I., D. Smeed, D. Rayner, W. E. Johns, R. H. Smith, D. L. Volkov, M. O. Baringer, and J. Collins, 2023: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2022 (v2022.1). Accessed 18 January 2024, https://doi.org/10.5285/04c79ece-3186-349a-e063-6c86abc0158c.
Mulet, S., and Coauthors, 2021: The new CNES-CLS18 global mean dynamic topography. Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021.
Müller, J. D., and Coauthors, 2023: Decadal trends in the oceanic storage of anthropogenic carbon from 1994 to 2014. AGU Adv., 4, e2023AV000875, https://doi.org/10.1029/2023AV000875.
Nerem, R. S., D. P. Chambers, E. W. Leuliette, G. T. Mitchum, and B. S. Giese, 1999: Variations in global mean sea level associated with the 1997–1998 ENSO event: Implications for measuring long term sea level change. Geophys. Res. Lett., 26, 3005–3008, https://doi.org/10.1029/1999GL002311.
Nerem, R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters, and G. T. Mitchum, 2018: Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA, 115, 2022–2025, https://doi.org/10.1073/pnas.1717312115.
Oliver, E. C. J., J. A. Benthuysen, S. Darmaraki, M. G. Donat, A. J. Hobday, N. J. Holbrook, R. W. Schlegel, and A. Sen Gupta, 2021: Marine heatwaves. Annu. Rev. Mar. Sci., 13, 313–342, https://doi.org/10.1146/annurev-marine-032720-095144.
O’Reilly, J. E., and P. J. Werdell, 2019: Chlorophyll algorithms for ocean color sensors – OC4, OC5 & OC6. Remote Sens. Environ., 229, 32–47, https://doi.org/10.1016/j.rse.2019.04.021.
Pahlevan, N., B. Smith, C. Binding, D. Gurlin, L. Li, M. Bresciani, and C. Giardino, 2021: Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters. Remote Sens. Environ., 253, 112200, https://doi.org/10.1016/j.rse.2020.112200.
Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34, L23610, https://doi.org/10.1029/2007GL031712.
Pita, I., M. Goes, D. L. Volkov, S. Dong, G. Goni, and M. Cirano, 2024: An ARGO and XBT observing system for the Atlantic Meridional Overturning Circulation and Meridional Heat Transport (AXMOC) at 22.5°S. J. Geophys. Res. Oceans, 129, e2023JC020010, https://doi.org/10.1029/2023JC020010.
Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea-level rise budgets. J. Climate, 23, 6336–6351, https://doi.org/10.1175/2010JCLI3682.1.
Qiu, B., and S. Chen, 2021: Revisit of the occurrence of the Kuroshio Large Meander south of Japan. J. Phys. Oceanogr., 51, 3679–3694, https://doi.org/10.1175/JPO-D-21-0167.1.
Qiu, B., S. Chen, N. Schneider, E. Oka, and S. Sugimoto, 2020: On the reset of the wind-forced decadal Kuroshio extension variability in late 2017. J. Climate, 33, 10 813–10 828, https://doi.org/10.1175/JCLI-D-20-0237.1.
Rahmstorf, S., J. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.
Rasmusson, E. M., and T. H. Carpenter, 1982: Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Reagan, J., T. Boyer, C. Schmid, and R. Locarnini, 2022: Subsurface salinity [in “State of the Climate in 2021”]. Bull. Amer. Meteor. Soc., 103 (8), S160–S162, https://doi.org/10.1175/BAMS-D-22-0072.1.
Reagan, J., T. Boyer, C. Schmid, and R. Locarnini, 2023: Subsurface salinity [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S165–S167, https://doi.org/10.1175/BAMS-D-23-0076.2.
Regnier, P., L. Resplandy, R. G. Najjar, and P. Ciais, 2022: The land-to-ocean loops of the global carbon cycle. Nature, 603, 401–410, https://doi.org/10.1038/s41586-021-04339-9.
Ren, L., K. Speer, and E. P. Chassignet, 2011: The mixed layer salinity budget and sea ice in the Southern Ocean. J. Geophys. Res., 116, C08031, https://doi.org/10.1029/2010JC006634.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1.
Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145–153, https://doi.org/10.1038/nclimate2872.
Rödenbeck, C., and Coauthors, 2015: Data-based estimates of the ocean carbon sink variability – First results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015.
Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81–100, https://doi.org/10.1016/j.pocean.2009.03.004.
Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367–371, https://doi.org/10.1126/science.1097403.
Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363, https://doi.org/10.1038/43854.
Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723–726, https://doi.org/10.1038/367723a0.
Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 1658–1672, https://doi.org/10.1002/jgrc.20122.
Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33, 1395–1409, https://doi.org/10.1029/95RG00184.
Siegel, D. A., S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, 2005: Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys. Res. Lett., 32, L20605, https://doi.org/10.1029/2005GL024310.
Siegel, D. A., and Coauthors, 2013: Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ., 135, 77–91, https://doi.org/10.1016/j.rse.2013.03.025.
Siegel, D. A., T. DeVries, I. Cetinić, and K. M. Bisson, 2023: Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci., 15, 329–356, https://doi.org/10.1146/annurev-marine-040722-115226.
Skliris, N., R. Marsh, S. A. Josey, S. A. Good, C. Liu, and R. P. Allan, 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater flux. Climate Dyn., 43, 709–736, https://doi.org/10.1007/s00382-014-2131-7.
Skliris, N., J. D. Zika, G. Nurser, S. A. Josey, and R. Marsh, 2016: Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci. Rep., 6, 38752, https://doi.org/10.1038/srep38752.
Smeed, D. A., and Coauthors, 2018: The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett., 45, 1527–1533, https://doi.org/10.1002/2017GL076350.
Smith, K. E., M. T. Burrows, A. J. Hobday, A. Sen Gupta, P. J. Moore, M. Thomsen, T. Wernberg, and D. A. Smale, 2021: Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science, 374, eabj3593, https://doi.org/10.1126/science.abj3593.
Smith, K. E., and Coauthors, 2023: Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci., 15, 119–145, https://doi.org/10.1146/annurev-marine-032122-121437.
Stackhouse, P. W., D. P. Kratz, G. R. McGarragh, S. K. Gupta, and E. B. Geier, 2006: Fast Longwave and Shortwave Radiative Flux (FLASHFlux) products from CERES and MODIS measurements. 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., P1.10, https://ams.confex.com/ams/Madison2006/techprogram/paper_113479.htm.
Sweet, W. V., J. Park, J. J. Marra, C. Zervas, and S. Gill, 2014: Sea level rise and nuisance flood frequency changes around the United States. NOAA Tech. Rep. NOS CO-OPS 073, 66 pp., https://tidesandcurrents.noaa.gov/publications/NOAA_Technical_Report_NOS_COOPS_073.pdf.
Talley, L. D., 2002: Salinity patterns in the ocean. The Earth System: Physical and Chemical Dimensions of Global Environmental Change, Vol. 1, Encyclopedia of Global Environmental Change, M. C. MacCracken and J. S. Perry, Eds., John Wiley and Sons, 629–640.
Twedt, K., N. Lei, X. Xiong, A. Angal, S. Li, T. Chang, and J. Sun, 2022: On-orbit calibration and performance of NOAA-20 VIIRS reflective solar bands. IEEE Trans. Geosci. Remote Sens., 60, 1–13, https://doi.org/10.1109/TGRS.2021.3108970.
Volkov, D. L., S.-K. Lee, R. Domingues, H. Zhang, and M. Goes, 2019: Interannual sea level variability along the southeastern seaboard of the United States in relation to the gyre-scale heat divergence in the North Atlantic. Geophys. Res. Lett., 46, 7481–7490, https://doi.org/10.1029/2019GL083596.
Volkov, D. L., R. Domingues, C. S. Meinen, R. Garcia, M. Baringer, G. Goni, and R. H. Smith, 2020: Inferring Florida Current volume transport from satellite altimetry. J. Geophys. Res. Oceans, 125, e2020JC016763, https://doi.org/10.1029/2020JC016763.
Volkov, D. L., K. Zhang, W. E. Johns, J. K. Willis, W. Hobbs, M. Goes, H. Zhang, and D. Menemenlis, 2023a: Atlantic meridional overturning circulation increases flood risk along the United States southeast coast. Nat. Commun., 14, 5095, https://doi.org/10.1038/s41467-023-40848-z.
Volkov, D. L., and Coauthors, 2023b: Meridional overturning circulation and heat transport in the Atlantic Ocean [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S181–S184, https://doi.org/10.1175/BAMS-D-23-0076.2.
von Schuckmann, K., and Coauthors, 2023: Heat stored in the Earth system 1960–2020: Where does the energy go? Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023.
Von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.
Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 65–89, https://doi.org/10.1002/wcc.371.
Wanninkhof, R., 2014: Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods, 12, 351–362, https://doi.org/10.4319/lom.2014.12.351.
Waugh, D. W., T. M. Hall, B. I. McNeil, R. Key, and R. J. Matear, 2006: Anthropogenic CO2 in the oceans estimated using transit time distributions. Tellus, 58B, 376–389, https://doi.org/10.1111/j.1600-0889.2006.00222.x.
Weijer, W., W. Cheng, O. A. Garuba, A. Hu, and B. T. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.
Werdell, P. J., and L. I. McKinna, 2019: Sensitivity of inherent optical properties from ocean reflectance inversion models to satellite instrument wavelength suites. Front. Earth Sci., 7, 54, https://doi.org/10.3389/feart.2019.00054.
Werdell, P. J., and Coauthors, 2013: Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt., 52, 2019–2037, https://doi.org/10.1364/AO.52.002019.
Werdell, P. J., and Coauthors, 2019: The Plankton, Aerosol, Cloud, Ocean Ecosystem mission: Status, science, advances. Bull. Amer. Meteor. Soc., 100, 1775–1794, https://doi.org/10.1175/BAMS-D-18-0056.1.
Westberry, T. K., and Coauthors, 2016: Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean. Global Biogeochem. Cycles, 30, 175–190, https://doi.org/10.1002/2015GB005276.
Wiese, D. N., D.-N. Yuan, C. Boening, F. W. Landerer, and M. M. Watkins, 2022: JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent HDR Water Height RL06.1M CRI Filtered version 3.0. PODAAC, accessed 13 February 2024, https://doi.org/10.5067/TEMSC-3MJ62.
Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 37, L06602, https://doi.org/10.1029/2010GL042372.
Willis, J. K., and W. R. Hobbs, 2024: Atlantic meridional overturning circulation near 41N from altimetry and Argo observations. Zenodo, accessed 10 January 2024, https://doi.org/10.5281/zenodo.8170366.
Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315–324, https://doi.org/10.1002/j.1477-8696.1998.tb06408.x.
Woosley, R. J., F. J. Millero, and R. Wanninkhof, 2016: Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003–2014. Global Biogeochem. Cycles, 30, 70–90, https://doi.org/10.1002/2015GB005248.
Worthington, E. L., B. I. Moat, D. A. Smeed, J. V. Mecking, R. Marsh, and G. D. McCarthy, 2021: A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline. Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021.
Wüst, G., 1936: Oberflächensalzgehalt, Verdunstung und Niederschlag auf dem Weltmeere. Länderkundliche Forschung: Festschrift zur Vollendung des sechzigsten Lebensjahres Norbert Krebs, J. Engelhorns Nachfahren, 347–359.
Xie, P., and Coauthors, 2014: An in situ-satellite blended analysis of global sea surface salinity. J. Geophys. Res. Oceans, 119, 6140–6160, https://doi.org/10.1002/2014JC010046.
Yashayaev, I., and J. W. Loder, 2017: Further intensification of deep convection in the Labrador Sea in 2016. Geophys. Res. Lett., 44, 1429–1438, https://doi.org/10.1002/2016GL071668.
Yin, X., B. Huang, Z.-Z. Hu, D. Chan, and H.-M. Zhang, 2023: Sea-surface temperatures [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S153–S156, https://doi.org/10.1175/BAMS-D-23-0076.2.
Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.
Yu, L., 2019: Global air–sea fluxes of heat, fresh water, and momentum: Energy budget closure and unanswered questions. Annu. Rev. Mar. Sci., 11, 227–248, https://doi.org/10.1146/annurev-marine-010816-060704.
Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527–540, https://doi.org/10.1175/BAMS-88-4-527.
Zhu, Y., and Coauthors, 2022: Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ., 3, 248, https://doi.org/10.1038/s43247-022-00580-w.
Zweng, M. M., and Coauthors, 2018: Salinity. Vol. 2, World Ocean Atlas 2018, NOAA Atlas NESDIS 82, 50 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol2.pdf.