radar in an automated national weather system

View More View Less
  • 1 National Severe Storms Laboratory, NOAA, Norman, Okla.
  • 2 The Center for the Environment and Man, Hartford, Conn.
© Get Permissions
Full access

Appropriate uses of radar in a national weather system within the next 10–15 years are considered. A radar network sensing precipitation reflectivity and utilizing many automatic techniques for acquiring and processing data, preparing forecasts, and communicating precipitation characteristics represents a worthwhile goal practically achievable by 1980. A suitable system would combine the information provided by radar and other sensors, would provide users with the specialized information they require at reasonable cost, and would promote effective interpersonal and man-machine relationships. It would also readily admit new instruments and techniques as their worth is demonstrated.

The meteorological applications of reflectivity data are listed and radar data flow rates corresponding to low, moderate, and high load configurations in the envisioned system are presented. Increasing flow rates correspond to increasing proportions of automatic as opposed to manual operations in the system.

The system outlined represents a preliminary goal which should be modified as new knowledge is acquired from field tests within the operational radar system and from other research.

1 Based on a report prepared for the Systems Development Office, National Weather Service, NOAA.

Appropriate uses of radar in a national weather system within the next 10–15 years are considered. A radar network sensing precipitation reflectivity and utilizing many automatic techniques for acquiring and processing data, preparing forecasts, and communicating precipitation characteristics represents a worthwhile goal practically achievable by 1980. A suitable system would combine the information provided by radar and other sensors, would provide users with the specialized information they require at reasonable cost, and would promote effective interpersonal and man-machine relationships. It would also readily admit new instruments and techniques as their worth is demonstrated.

The meteorological applications of reflectivity data are listed and radar data flow rates corresponding to low, moderate, and high load configurations in the envisioned system are presented. Increasing flow rates correspond to increasing proportions of automatic as opposed to manual operations in the system.

The system outlined represents a preliminary goal which should be modified as new knowledge is acquired from field tests within the operational radar system and from other research.

1 Based on a report prepared for the Systems Development Office, National Weather Service, NOAA.

Save