Interpretation of Some Terms and Phrases in Public Weather Forecasts

View More View Less
  • 1 Department of Atmospheric Sciences, Oregon State University, Corvallis, Oreg. 97331
© Get Permissions
Full access

This paper reports some results of a study in which two groups of individuals—undergraduate students and professional meteorologists at Oregon State University—completed a short questionnaire concerning their interpretations of terminology commonly used in public weather forecasts. The questions related to terms and phrases associated with three elements: 1) cloudiness—fraction of sky cover; 2) precipitation—spatial and/or temporal variations; and 3) temperature—specification of intervals.

The students' responses indicate that cloudiness terms are subject to wide and overlapping ranges of interpretation, although the interpretations of these terms correspond quite well to National Weather Service definitions. Their responses to the precipitation and temperature questions reveal that some confusion exists concerning the meaning of spatial and temporal modifiers in precipitation forecasts and that some individuals interpret temperature ranges in terms of asymmetric intervals. When compared to the students' responses, the meteorologists' responses exhibit narrower ranges of interpretation of the cloudiness terms and less confusion about the meaning of spatial/temporal precipitation modifiers.

The study was not intended to be a definitive analysis of public understanding of forecast terminology. Instead, it should be viewed as a primitive form of the type of forecast-terminology study that must be undertaken in the future. Some implications of this investigation for future work in the area are discussed briefly.

This paper reports some results of a study in which two groups of individuals—undergraduate students and professional meteorologists at Oregon State University—completed a short questionnaire concerning their interpretations of terminology commonly used in public weather forecasts. The questions related to terms and phrases associated with three elements: 1) cloudiness—fraction of sky cover; 2) precipitation—spatial and/or temporal variations; and 3) temperature—specification of intervals.

The students' responses indicate that cloudiness terms are subject to wide and overlapping ranges of interpretation, although the interpretations of these terms correspond quite well to National Weather Service definitions. Their responses to the precipitation and temperature questions reveal that some confusion exists concerning the meaning of spatial and temporal modifiers in precipitation forecasts and that some individuals interpret temperature ranges in terms of asymmetric intervals. When compared to the students' responses, the meteorologists' responses exhibit narrower ranges of interpretation of the cloudiness terms and less confusion about the meaning of spatial/temporal precipitation modifiers.

The study was not intended to be a definitive analysis of public understanding of forecast terminology. Instead, it should be viewed as a primitive form of the type of forecast-terminology study that must be undertaken in the future. Some implications of this investigation for future work in the area are discussed briefly.

Save