Simulation of the Arid Climate of the Southern Great Basin Using a Regional Climate Model

Filippo Giorgi National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Filippo Giorgi in
Current site
Google Scholar
PubMed
Close
,
Gary T. Bates National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gary T. Bates in
Current site
Google Scholar
PubMed
Close
, and
Steven J. Nieman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Steven J. Nieman in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

As part of the development effort of a regional climate model (RCM) for the southern Great Basin, this paper presents a validation analysis of the climatology generated by a high-resolution RCM driven by observations. The RCM is a version of the National Center for Atmospheric Research/Pennsylvania State University mesoscale model, version 4 (MM4), modified for application to regional climate simulation. Two multiyear simulations, for the periods 1 January 1982 to 31 December 1983 and 1 January 1988 to 25 April 1989, were performed over the western United States with the RCM driven by European Centre for Medium-Range Weather Forecasts analyses of observations. The model resolution is 60 km. This validation analysis is the first phase of a project to produce simulations of future climate scenarios over a region surrounding Yucca Mountain, Nevada, the only location currently being considered as a potential high-level nuclear-waste repository site.

Model-produced surface air temperatures and precipitation were compared with observations from five southern Nevada stations located in the vicinity of Yucca Mountain. The seasonal cycles of temperature and precipitation were simulated well. Monthly and seasonal temperature biases were generally negative and largely explained by differences in elevation between the observing stations and the model topography. The model-simulated precipitation captured the extreme dryness of the Great Basin. Average yearly precipitation was generally within 30% of observed and the range of monthly precipitation amounts was the same as in the observations. Precipitation biases were mostly negative in the summer and positive in the winter. The number of simulated daily precipitation events for various precipitation intervals was within factors of 1.5–3.5 of observed. Overall, the model tended to overestimate the number of light precipitation events and underestimate the number of heavy precipitation events. At Yucca Mountain, simulated precipitation, soil moisture content, and water infiltration below the root zone (top 1 m) were maximized in the winter. Evaporation peaked in the spring after temperatures began to increase.

The conclusion drawn from this validation analysis is that this high-resolution RCM simulates the regional surface climatology of the southern Great Basin reasonably well when driven by meteorological fields derived from observations.

*The National Center for Atmospheric Research is sponsored by the National Science Foundation.

As part of the development effort of a regional climate model (RCM) for the southern Great Basin, this paper presents a validation analysis of the climatology generated by a high-resolution RCM driven by observations. The RCM is a version of the National Center for Atmospheric Research/Pennsylvania State University mesoscale model, version 4 (MM4), modified for application to regional climate simulation. Two multiyear simulations, for the periods 1 January 1982 to 31 December 1983 and 1 January 1988 to 25 April 1989, were performed over the western United States with the RCM driven by European Centre for Medium-Range Weather Forecasts analyses of observations. The model resolution is 60 km. This validation analysis is the first phase of a project to produce simulations of future climate scenarios over a region surrounding Yucca Mountain, Nevada, the only location currently being considered as a potential high-level nuclear-waste repository site.

Model-produced surface air temperatures and precipitation were compared with observations from five southern Nevada stations located in the vicinity of Yucca Mountain. The seasonal cycles of temperature and precipitation were simulated well. Monthly and seasonal temperature biases were generally negative and largely explained by differences in elevation between the observing stations and the model topography. The model-simulated precipitation captured the extreme dryness of the Great Basin. Average yearly precipitation was generally within 30% of observed and the range of monthly precipitation amounts was the same as in the observations. Precipitation biases were mostly negative in the summer and positive in the winter. The number of simulated daily precipitation events for various precipitation intervals was within factors of 1.5–3.5 of observed. Overall, the model tended to overestimate the number of light precipitation events and underestimate the number of heavy precipitation events. At Yucca Mountain, simulated precipitation, soil moisture content, and water infiltration below the root zone (top 1 m) were maximized in the winter. Evaporation peaked in the spring after temperatures began to increase.

The conclusion drawn from this validation analysis is that this high-resolution RCM simulates the regional surface climatology of the southern Great Basin reasonably well when driven by meteorological fields derived from observations.

*The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save