All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 448 85 5
PDF Downloads 232 60 3

Meteorological Implications of the First Voyage of Christopher Columbus

Randall S. Cerveny
Search for other papers by Randall S. Cerveny in
Current site
Google Scholar
PubMed
Close
and
Jay S. Hobgood
Search for other papers by Jay S. Hobgood in
Current site
Google Scholar
PubMed
Close
Full access

The log of the first voyage of Christopher Columbus to the New World provides valuable information on the meteorological conditions of September 1492. Comparison and analysis of the descriptive accounts of weather made by Columbus and his pilots to other available Columbian and modern data leads to two distinct perspectives on the Columbian voyage: an examination of the frequency of “calm” events, and an analysis of the lack of tropical storm activity. The major conclusions of the first portion of the study include: 1) The Columbian pilots' descriptions of “calms” related to travel slower than travel occurring during other portions of the voyage. That rate of travel compares favorably to calm winds and an oceanic current of 0.4 knots, a value close to modern-day values; 2) The frequency of “calm” events experienced by Christopher Columbus in 1492 is significantly higher than the most liberal estimates of calms in the North Atlantic over the last 100 years; and 3) The locations of the Columbian calms are generally in the same region currently experiencing the highest frequency of calms. The main finding of the second portion of the study is that, based on historical hurricane records from 1886 to 1989, the center of a hurricane would have passed within 100 km of Columbus only once in the past 104 years. Inclusion of tropical storms increases this number to four out of 104 years. Therefore, while Columbus may indeed have been fortunate to have avoided severe weather during his voyage, the odds decidedly were in his favor. This Columbian “weather luck” was due to a combination of 1) encountering abnormally strong anticyclonic flow over the eastern North Atlantic, 2) starting late enough in the hurricane season to significantly decrease the probability of experiencing a hurricane, and 3) taking a north and easterly voyage, thereby avoiding the area of maximum hurricane occurrence.

*Department of Geography, Arizona State University, Tempe, AZ 85287-0104

+Atmospheric Sciences, Department of Geography, The Ohio State University, Columbus, OH 43210

The log of the first voyage of Christopher Columbus to the New World provides valuable information on the meteorological conditions of September 1492. Comparison and analysis of the descriptive accounts of weather made by Columbus and his pilots to other available Columbian and modern data leads to two distinct perspectives on the Columbian voyage: an examination of the frequency of “calm” events, and an analysis of the lack of tropical storm activity. The major conclusions of the first portion of the study include: 1) The Columbian pilots' descriptions of “calms” related to travel slower than travel occurring during other portions of the voyage. That rate of travel compares favorably to calm winds and an oceanic current of 0.4 knots, a value close to modern-day values; 2) The frequency of “calm” events experienced by Christopher Columbus in 1492 is significantly higher than the most liberal estimates of calms in the North Atlantic over the last 100 years; and 3) The locations of the Columbian calms are generally in the same region currently experiencing the highest frequency of calms. The main finding of the second portion of the study is that, based on historical hurricane records from 1886 to 1989, the center of a hurricane would have passed within 100 km of Columbus only once in the past 104 years. Inclusion of tropical storms increases this number to four out of 104 years. Therefore, while Columbus may indeed have been fortunate to have avoided severe weather during his voyage, the odds decidedly were in his favor. This Columbian “weather luck” was due to a combination of 1) encountering abnormally strong anticyclonic flow over the eastern North Atlantic, 2) starting late enough in the hurricane season to significantly decrease the probability of experiencing a hurricane, and 3) taking a north and easterly voyage, thereby avoiding the area of maximum hurricane occurrence.

*Department of Geography, Arizona State University, Tempe, AZ 85287-0104

+Atmospheric Sciences, Department of Geography, The Ohio State University, Columbus, OH 43210

Save