• Abbott, B. W., and et al. , 2019: Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci., 12, 533540, https://doi.org/10.1038/s41561-019-0374-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abolafia-Rosenzweig, R., M. Pan, J. L. Zeng, and B. Livneh, 2021: Remotely sensed ensembles of the terrestrial water budget over major global river basins: An assessment of three closure techniques. Remote Sens. Environ., 252, 112191, https://doi.org/10.1016/j.rse.2020.112191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., 2014: Combining datasets of satellite-retrieved products. Part I: Methodology and water budget closure. J. Hydrometeor., 15, 16771691, https://doi.org/10.1175/JHM-D-13-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., 2018: Atmospheric water vapour profiling over ocean/land and for clear/cloudy situations using microwave observations. Remote Sensing of Clouds and Precipitation, Springer, 215255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albergel, C., and et al. , 2013: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeor., 14, 12591277, https://doi.org/10.1175/JHM-D-12-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., M. Bador, R. Roca, S. Contractor, M. G. Donat, and P. L. Nguyen, 2020: Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett., 15, 055002, https://doi.org/10.1088/1748-9326/ab79e2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and et al. , 2020: Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci., 1472, 4975, https://doi.org/10.1111/nyas.14337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asner, G. P., and et al. , 2012: High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences, 9, 26832696, https://doi.org/10.5194/bg-9-2683-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avitabile, V., and et al. , 2016: An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biol., 22, 14061420, https://doi.org/10.1111/gcb.13139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azarderakhsh, M., W. B. Rossow, F. Papa, H. Norouzi, and R. Khanbilvardi, 2011: Diagnosing water variations within the Amazon basin using satellite data. J. Geophys. Res., 116, D24107, https://doi.org/10.1029/2011JD015997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babaeian, E., M. Sadeghi, S. B. Jones, C. Montzka, H. Vereecken, and M. Tuller, 2019: Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys., 57, 530616, https://doi.org/10.1029/2018RG000618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., and A. Rivera, 2007: A review of remote sensing methods for glacier mass balance determination. Global Planet. Change, 59, 138148, https://doi.org/10.1016/j.gloplacha.2006.11.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., R. M. Westaway, B. Marzeion, and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environ. Res. Lett., 13, 063008, https://doi.org/10.1088/1748-9326/aac2f0.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1975: Die Weltwasserbilanz: Niederschlag, Verdunstung und Abfluß über Land und Meer sowie auf der Erde im Jahresdurchschnitt. R. Oldenbourg Verlag, 197 pp.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and et al. , 2021: Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci., 25, 1740, https://doi.org/10.5194/hess-25-17-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., and J. Sheffield, 2019: Evapotranspiration partitioning in CMIP5 models: Uncertainties and future projections. J. Climate, 32, 26532671, https://doi.org/10.1175/JCLI-D-18-0583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, and M. Hrachowitz, 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, https://doi.org/10.1038/nclimate2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air–sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, https://doi.org/10.1002/joc.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, et al. , Eds., Cambridge University Press, 867952.

    • Search Google Scholar
    • Export Citation
  • Blazquez, A., B. Meyssignac, J. M. Lemoine, E. Berthier, A. Ribes, and A. Cazenave, 2018: Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: Implications for the global water and sea level budgets. Geophys. J. Int., 215, 415430, https://doi.org/10.1093/gji/ggy293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 14311443, https://doi.org/10.1175/BAMS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolch, T., L. Sandberg Sørensen, S. B. Simonsen, N. Mölg, H. Machguth, P. Rastner, and F. Paul, 2013: Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Res. Lett., 40, 875881, https://doi.org/10.1002/grl.50270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonfils, C. J. W., B. D. Santer, J. C. Fyfe, K. Marvel, T. J. Phillips, and S. R. H. Zimmerman, 2020: Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Climate Change, 10, 726731, https://doi.org/10.1038/s41558-020-0821-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böttcher, H., and et al. , 2017: Independent monitoring: Building trust and consensus around GHG data for increased accountability of mitigation in the land use sector. European Commission Rep., 112 pp., https://doi.org/10.2834/513344.

    • Search Google Scholar
    • Export Citation
  • Braithwaite, R. J., and P. D. Hughes, 2020: Regional geography of glacier mass balance variability over seven decades 1946–2015. Front. Earth Sci., 8, 302, https://doi.org/10.3389/feart.2020.00302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenninkmeijer, C. A. M., and et al. , 2007: Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrumented Container: The new CARIBIC system. Atmos. Chem. Phys., 7, 49534976, https://doi.org/10.5194/acp-7-4953-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broadbent, A. M., A. M. Coutts, K. A. Nice, M. Demuzere, E. S. Krayenhoff, N. J. Tapper, and H. Wouters, 2019: The Air-Temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0): An efficient and user-friendly model of city cooling. Geosci. Model Dev., 12, 785803, https://doi.org/10.5194/gmd-12-785-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocca, L., A. Tarpanelli, P. Filippucci, W. Dorigo, F. Zaussinger, A. Gruber, and D. Fernández-Prieto, 2018: How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf., 73, 752766, https://doi.org/10.1016/j.jag.2018.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J., O. Ferrians, J. Heginbottom, and E. Melnikov, 2002: Circum-Arctic map of permafrost and ground-ice conditions, version 2. National Snow and Ice Data Center, accessed 9 August 2021, https://nsidc.org/data/ggd318.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and C. Derksen, 2013: Is Eurasian October snow cover extent increasing? Environ. Res. Lett., 8, 024006, https://doi.org/10.1088/1748-9326/8/2/024006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., B. Fang, and L. Mudryk, 2019: Update of Canadian historical snow survey data and analysis of snow water equivalent trends, 1967–2016. Atmos.–Ocean, 57, 149156, https://doi.org/10.1080/07055900.2019.1598843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnett, W. C., M. Taniguchi, and J. Oberdorfer, 2001: Measurement and significance of the direct discharge of groundwater into the coastal zone. J. Sea Res., 46, 109116, https://doi.org/10.1016/S1385-1101(01)00075-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busker, T., A. de Roo, E. Gelati, C. Schwatke, M. Adamovic, B. Bisselink, J.-F. Pekel, and A. Cottam, 2019: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci., 23, 669690, https://doi.org/10.5194/hess-23-669-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and et al. , 2018: Global sea-level budget 1993–present. Earth Syst. Sci. Data, 10, 15511590, https://doi.org/10.5194/essd-10-1551-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, A. T., J. L. Foster, and D. K. Hall, 1990: Satellite sensor estimates of Northern Hemisphere snow volume. Int. J. Remote Sens., 11, 167171, https://doi.org/10.1080/01431169008955009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., and Z. Liu, 2016: Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. Atmos., 121, 11 44211 462, https://doi.org/10.1002/2016JD024917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., J. S. Famigliett, B. R. Scanlon, and M. Rodell, 2016: Groundwater storage changes: Present status from GRACE observations. Surv. Geophys., 37, 397417, https://doi.org/10.1007/s10712-015-9332-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cogley, J., and et al. , 2011: Glossary of glacier mass balance and related terms. IACS Contribution 2, 124 pp., https://unesdoc.unesco.org/ark:/48223/pf0000192525.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. S. Mankin, K. Marvel, A. P. Williams, J. E. Smerdon, and K. J. Anchukaitis, 2020a: Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8, e2019EF001461, https://doi.org/10.1029/2019EF001461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., S. S. McDermid, M. J. Puma, A. P. Williams, R. Seager, M. Kelley, L. Nazarenko, and I. Aleinov, 2020b: Divergent regional climate consequences of maintaining current irrigation rates in the 21st century. J. Geophys. Res., 125, e2019JD031814, https://doi.org/10.1029/2019JD031814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crétaux, J. F., R. Abarca-del-Río, M. Bergé-Nguyen, A. Arsen, V. Drolon, G. Clos, and P. Maisongrande, 2016: Lake volume monitoring from space. Surv. Geophys., 37, 269305, https://doi.org/10.1007/s10712-016-9362-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, I., E. H. Sutanudjaja, L. P. H. van Beek, and M. F. P. Bierkens, 2015: A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci., 19, 823837, https://doi.org/10.5194/hess-19-823-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Graaf, I., R. van Beek, T. Gleeson, N. Moosdorf, O. Schmitz, E. Sutanudjaja, and M. Bierkens, 2016: A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-121.

    • Search Google Scholar
    • Export Citation
  • Deines, J. M., A. D. Kendall, and D. W. Hyndman, 2017: Annual irrigation dynamics in the U.S. northern High Plains derived from Landsat satellite data. Geophys. Res. Lett., 44, 93509360, https://doi.org/10.1002/2017GL074071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, P., and et al. , 2019: Sixty years of global progress in managed aquifer recharge. Hydrogeol. J., 27, 130, https://doi.org/10.1007/s10040-018-1841-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., R. Richter, F. Baret, R. Bamler, and W. Wagner, 2009: Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens., 1, 11391170, https://doi.org/10.3390/rs1041139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A.,, K. Scipal, R. M. Parinussa, Y. Y. Liu, W. Wagner, R. A. M. de Jeu, and V. Naeimi, 2010: Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci., 14, 26052616, https://doi.org/10.5194/hess-14-2605-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A.,, and et al. , 2013: Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J., 12, 121, https://doi.org/10.2136/vzj2012.0097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and et al. , 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A.,, I. Himmelbauer, L. Zappa, W. Preimesberger, D. Aberer, L. Schremmer, and I. Petrakovic, 2021: The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-2.

    • Search Google Scholar
    • Export Citation
  • Doughty, C. E., S. R. Loarie, and C. B. Field, 2012: Theoretical impact of changing albedo on precipitation at the southernmost boundary of the ITCZ in South America. Earth Interact., 16, https://doi.org/10.1175/2012EI422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downing, J. A., and et al. , 2006: The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr., 51, 23882397, https://doi.org/10.4319/lo.2006.51.5.2388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droogers, P., W. W. Immerzeel, and I. J. Lorite, 2010: Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agric. Water Manage., 97, 13511359, https://doi.org/10.1016/j.agwat.2010.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eakins, B. W., and G. F. Sharman, 2010: Volumes of the world’s oceans from ETOPO1. NOAA National Geophys. Data Center, accessed 25 August 2020, www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, https://doi.org/10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eekhout, J. P. C., J. E. Hunink, W. Terink, and J. de Vente, 2018: Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci., 22, 59355946, https://doi.org/10.5194/hess-22-5935-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, G. W., 1974: Precipitation signatures in sea-surface-layer conditions during BOMEX. J. Phys. Oceanogr., 4, 498501, https://doi.org/10.1175/1520-0485(1974)004<0498:PSISSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellison, D., and et al. , 2017: Trees, forests and water: Cool insights for a hot world. Global Environ. Change, 43, 5161, https://doi.org/10.1016/j.gloenvcha.2017.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderlin, E. M., I. M. Howat, S. Jeong, M. J. Noh, J. H. Van Angelen, and M. R. Van Den Broeke, 2014: An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866872, https://doi.org/10.1002/2013GL059010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and et al. , 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and et al. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., 2014: The global groundwater crisis. Nat. Climate Change, 4, 945948, https://doi.org/10.1038/nclimate2425.

  • FAO, 2021: AQUASTAT database. Accessed 19 August 2021, www.fao.org/nr/water/aquastat/data/query/index.html?lang=en.

  • Farinotti, D., M. Huss, J. J. Fürst, J. Landmann, H. Machguth, F. Maussion, and A. Pandit, 2019: A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci., 12, 168173, https://doi.org/10.1038/s41561-019-0300-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, https://doi.org/10.1029/1999GB001254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, A. P., R. Nieto, and L. Gimeno, 2019: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive. Earth Syst. Sci. Data, 11, 603627, https://doi.org/10.5194/essd-11-603-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, V. G., and Z. Asiah, 2016: An investigation on the closure of the water budget methods over Volta basin using multi-satellite data. International Association of Geodesy Symposia, Vol. 144, Springer Verlag, 171178.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and et al. , 2017: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., 53, 26182626, https://doi.org/10.1002/2016WR020175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flörke, M., E. Kynast, I. Bärlund, S. Eisner, F. Wimmer, and J. Alcamo, 2013: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environ. Change, 23, 144156, https://doi.org/10.1016/j.gloenvcha.2012.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and et al. , 2011: Solutions for a cultivated planet. Nature, 478, 337342, https://doi.org/10.1038/nature10452.

  • Ford, T. W., E. Harris, and S. M. Quiring, 2014: Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci., 18, 139154, https://doi.org/10.5194/hess-18-139-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, S., J. Chilton, G. J. Nijsten, and A. Richts, 2013: Groundwater—A global focus on the “local resource.” Curr. Opin. Environ. Sustain., 5, 685695, https://doi.org/10.1016/j.cosust.2013.10.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and et al. , 2021: Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ., 2, 107122, https://doi.org/10.1038/s43017-020-00128-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederikse, T., and et al. , 2020: The causes of sea-level rise since 1900. Nature, 584, 393397, https://doi.org/10.1038/s41586-020-2591-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., C. Birkett, and D. P. Lettenmaier, 2012: Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res., 48, W09504, https://doi.org/10.1029/2012WR012063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and et al. , 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, https://doi.org/10.1126/science.1234532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gärtner-Roer, I., K. Naegeli, M. Huss, T. Knecht, H. Machguth, and M. Zemp, 2014: A database of worldwide glacier thickness observations. Global Planet. Change, 122, 330344, https://doi.org/10.1016/j.gloplacha.2014.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GCOS, 2015: Status of the Global Observing System for Climate. WMO Rep., 353 pp., https://library.wmo.int/index.php?lvl=notice_display&id=18962.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2016: The Global Observing System for Climate: Implementation needs. WMO Rep., 235 pp., https://public.wmo.int/en/resources/library/global-observing-system-climate-implementation-needs.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., P. M. Cox, R. A. Betts, O. Boucher, C. Huntingford, and P. A. Stott, 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835838, https://doi.org/10.1038/nature04504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., and et al. , 2020: FluxSat: Measuring the ocean–atmosphere turbulent exchange of heat and moisture from space. Remote Sens., 12, 1796, https://doi.org/10.3390/rs12111796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghiggi, G., V. Humphrey, S. I. Seneviratne, and L. Gudmundsson, 2019: GRUN: An observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data, 11, 16551674, https://doi.org/10.5194/essd-11-1655-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drumond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, https://doi.org/10.1029/2010GL043712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and et al. , 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, T., K. M. Befus, S. Jasechko, E. Luijendijk, and M. B. Cardenas, 2016: The global volume and distribution of modern groundwater. Nat. Geosci., 9, 161167, https://doi.org/10.1038/ngeo2590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., 1996: Basic water requirements for human activities: Meeting basic needs. Water Int., 21, 8392, https://doi.org/10.1080/02508069608686494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GLIMS and NSIDC, 2005: GLIMS glacier database, version 1 (updated 2018). National Snow and Ice Data Center, accessed 11 August 2021, https://doi.org/DOI:10.7265/N5V98602.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. L., G. Liston, C. Chiu, and B. Notaros, 2019: Thesis consistency in the AMSR-E snow products: Groundwork for a coupled snowfall and SWE algorithm. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 60 pp., https://mountainscholar.org/handle/10217/199801.

    • Search Google Scholar
    • Export Citation
  • Goulden, M. L., and R. C. Bales, 2014: Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. USA, 111, 14 07114 075, https://doi.org/10.1073/pnas.1319316111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., W. A. Dorigo, S. Zwieback, A. Xaver, and W. Wagner, 2013: Characterizing coarse-scale representativeness of in situ soil moisture measurements from the International Soil Moisture Network. Vadose Zone J., 12, 116, https://doi.org/10.2136/vzj2012.0170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo, 2019: Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717739, https://doi.org/10.5194/essd-11-717-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutenstein, M., K. Fennig, M. Schröder, T. Trent, S. Bakan, J. B. Roberts, and F. R. Robertson, 2021: Intercomparison of freshwater fluxes over ocean and investigations into water budget closure. Hydrol. Earth Syst. Sci., 25, 121146, https://doi.org/10.5194/hess-25-121-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberkorn, A., 2019: European snow booklet. COST Doc., 363 pp., https://doi.org/10.16904/envidat.59.

  • Hamdi, R., and et al. , 2020: The state-of-the-art of urban climate change modeling and observations. Earth Syst. Environ., 4, 631646, https://doi.org/10.1007/s41748-020-00193-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and et al. , 2015: Challenges in quantifying changes in the global water cycle. Bull. Amer. Meteor. Soc., 96, 10971115, https://doi.org/10.1175/BAMS-D-13-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and et al. , 2013: SPARC data initiative: Comparison of water vapor climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 11 82411 846, https://doi.org/10.1002/jgrd.50752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heginbottom, J. A., J. Brown, E. S. Melnikov, and O. J. Ferrians, Jr., 1993: Circum-Arctic map of permafrost and ground ice conditions. Proc. Sixth Int. Conf. on Permafrost, Beijing, China, Chinese Society of Glaciology and Geocryology, 11321136.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herold, M., and et al. , 2019: The role and need for space-based forest biomass-related measurements in environmental management and policy. Surv. Geophys., 40, 757778, https://doi.org/10.1007/s10712-019-09510-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, https://doi.org/10.1002/qj.2528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Heudorfer, B., E. Haaf, K. Stahl, and R. Barthel, 2019: Index-based characterization and quantification of groundwater dynamics. Water Resour. Res., 55, 55755592, https://doi.org/10.1029/2018WR024418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, F., and S. Beltaos, 2008: River ice. Hydrologic Processes, M.-k. Woo, Ed., Vol. 2, Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience, Springer, 281305.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and S. I. Seneviratne, 2017: Basin-scale water-balance dataset (BSWB): An update. Earth Syst. Sci. Data, 9, 251258, https://doi.org/10.5194/essd-9-251-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and et al. , 2013: The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, https://doi.org/10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosseini, M., and R. Kerachian, 2017: A data fusion-based methodology for optimal redesign of groundwater monitoring networks. J. Hydrol., 552, 267282, https://doi.org/10.1016/j.jhydrol.2017.06.046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., Y. Chen, S. Zhang, and J. Wu, 2018: Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys., 56, 333360, https://doi.org/10.1029/2018RG000598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., 2011: Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47, W07511, https://doi.org/10.1029/2010WR010299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., 2013: Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7, 877887, https://doi.org/10.5194/tc-7-877-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., and R. Hock, 2015: A new model for global glacier change and sea-level rise. Front. Earth Sci., 3, 54, https://doi.org/10.3389/feart.2015.00054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The operational weather radar network in Europe. Bull. Amer. Meteor. Soc., 95, 897907, https://doi.org/10.1175/BAMS-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Idso, S. B., and A. J. Brazel, 1984: Rising atmospheric carbon dioxide concentrations may increase streamflow. Nature, 312, 5153, https://doi.org/10.1038/312051a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2019: Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC, 765 pp., www.ipcc.ch/srocc/.

  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and T. J. Schmugge, 1991: Vegetation effects on the microwave emission of soils. Remote Sens. Environ., 36, 203212, https://doi.org/10.1016/0034-4257(91)90057-D.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jalilvand, E., M. Tajrishy, S. A. Ghazi Zadeh Hashemi, and L. Brocca, 2019: Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ., 231, 111226, https://doi.org/10.1016/j.rse.2019.111226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. B., S. Harrison, K. Anderson, and R. A. Betts, 2018: Mountain rock glaciers contain globally significant water stores. Sci. Rep., 8, 2834, https://doi.org/10.1038/s41598-018-21244-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. B., S. Harrison, K. Anderson, R. A. Betts, S. Shannon, and R. A. Betts, 2021: Rock glaciers represent hidden water stores in the Himalaya. Sci. Total Environ., 145368, https://doi.org/10.1016/j.scitotenv.2021.145368, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12, 28562880, https://doi.org/10.1175/1520-0442(1999)012<2856:NIITOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, M., and et al. , 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., M. Großhauser, and B. Marzeion, 2010: Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA, 107, 20 22320 227, https://doi.org/10.1073/pnas.1008162107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. E., A. T. Chang, L. Tsang, and J. L. Foster, 2003: A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41, 230242, https://doi.org/10.1109/TGRS.2003.809118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenway, S., A. Gregory, and J. McMahon, 2011: Urban water mass balance analysis. J. Ind. Ecol., 15, 693706, https://doi.org/10.1111/j.1530-9290.2011.00357.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and et al. , 2012: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 50, 13841403, https://doi.org/10.1109/TGRS.2012.2184548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum, 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., and et al. , 2020: Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun. Earth Environ., 1, 1, https://doi.org/10.1038/s43247-020-0001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinzel, P., and C. Legleiter, 2019: sUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric lidar. Remote Sens., 11, 2317, https://doi.org/10.3390/rs11192317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kittel, C. M. M., 2020: Satellite radar observations for hydrologic and hydrodynamic modelling. Ph.D. dissertation, Technical University of Denmark, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Konikow, L. F., 2011: Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett., 38, L17401, https://doi.org/10.1029/2011GL048604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konings, A. G., and M. Momen, 2018: Frequency-dependence of vegetation optical depth-derived isohydriciy estimates. Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 90459047, https://doi.org/10.1109/IGARSS.2018.8519441.

    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018: Plant physiological responses to rising CO2 modify simulated daily runoff intensity with implications for global-scale flood risk assessment. Geophys. Res. Lett., 45, 12 45712 466, https://doi.org/10.1029/2018GL079901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koppa, A., S. Alam, D. G. Miralles, and M. Gebremichael, 2021, Budyko-based long-term water and energy balance closure in global watersheds from Earth observations. Water Resour. Res., 57, e2020WR028658, https://doi.org/10.1029/2020WR028658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korzoun, V. I., and et al. , 1978: World Water Balance and Water Resources of the Earth. UNESCO Press, 663 pp.

  • Koutsoyiannis, D., 2020: Revisiting the global hydrological cycle: Is it intensifying? Hydrol. Earth Syst. Sci., 24, 38993932, https://doi.org/10.5194/hess-24-3899-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski, 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 44634478, https://doi.org/10.5194/hess-19-4463-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., J. O. Dickey, and A. Güntner, 2010: Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J. Geophys. Res., 115, D23115, https://doi.org/10.1029/2010JD014584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landwehr, S., N. O’Sullivan, and B. Ward, 2015: Direct flux measurements from mobile platforms at sea: Motion and airflow distortion corrections revisited. J. Atmos. Oceanic Technol., 32, 11631178, https://doi.org/10.1175/JTECH-D-14-00137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawford, R. G., and et al. , 2004: Advancing global- and continental-scale hydrometeorology: Contributions of GEWEX hydrometeorology panel. Bull. Amer. Meteor. Soc., 85, 19171930, https://doi.org/10.1175/BAMS-85-12-1917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemordant, L., and P. Gentine, 2019: Vegetation response to rising CO2 impacts extreme temperatures. Geophys. Res. Lett., 46, 13831392, https://doi.org/10.1029/2018GL080238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and et al. , 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, B., and et al. , 2019: Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res., 55, 75647586, https://doi.org/10.1029/2018WR024618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lievens, H., and et al. , 2019: Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liman, J., M. Schröder, K. Fennig, A. Andersson, and R. Hollmann, 2018: Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters. Atmos. Meas. Tech., 11, 17931815, https://doi.org/10.5194/amt-11-1793-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and et al. , 2018: Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets. Hydrol. Earth Syst. Sci., 22, 351371, https://doi.org/10.5194/hess-22-351-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., S. Purkey, B. Meyssignac, A. Blazquez, N. Kolodziejczyk, and J. Bamber, 2019: Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015. Sci. Rep., 9, 17717, https://doi.org/10.1038/s41598-019-54239-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Looser, U., I. Dornblut, and T. de Couet, 2007: The Global Terrestrial Network for River Discharge (GTN-R): Real-time access to river discharge data on a global scale. GRDC Rep. 36, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Lopez, O., and et al. , 2020: Mapping groundwater abstractions from irrigated agriculture: Big data, inverse modeling and a satellite–model fusion approach. Hydrol. Earth Syst. Sci., 24, 52515277, https://doi.org/10.5194/hess-24-5251-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luck, M., M. Landis, and F. Gassert, 2015: Aqueduct water stress projections: Decadal projections of water supply and demand using CMIP5 GCMs. World Resources Institute Tech. Note, 20 pp.

    • Search Google Scholar
    • Export Citation
  • Luijendijk, E., T. Gleeson, and N. Moosdorf, 2020: Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nat. Commun., 11, 1260, https://doi.org/10.1038/s41467-020-15064-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z., Q. Shao, W. Wan, H. Li, X. Chen, S. Zhu, and X. Ding, 2021: A new method for assessing satellite-based hydrological data products using water budget closure. J. Hydrol., 594, 125927, https://doi.org/10.1016/j.jhydrol.2020.125927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makihara, Y., 1996: A method for improving radar estimates of precipitation by comparing data from radars and raingauges. J. Meteor. Soc. Japan, 74, 459480, https://doi.org/10.2151/jmsj1965.74.4_459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., M. V. Struglia, N. Zeng, and K. M. Lau, 2002: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Climate, 15, 16741690, https://doi.org/10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and et al. , 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., R. de Jeu, N. Verhoest, H. Schuurmans, J. Kleijer, and D. Miralles, 2018: Towards estimating land evaporation at field scales using GLEAM. Remote Sens., 10, 1720, https://doi.org/10.3390/rs10111720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., B. I. Cook, C. J. W. Bonfils, P. J. Durack, J. E. Smerdon, and A. P. Williams, 2019: Twentieth-century hydroclimate changes consistent with human influence. Nature, 569, 5965, https://doi.org/10.1038/s41586-019-1149-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massari, C., and et al. , 2020: A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products. Hydrol. Earth Syst. Sci., 24, 26872710, https://doi.org/10.5194/hess-24-2687-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Schröder, F. A. Furuzawa, C. Kummerow, E. Rustemeier, and U. Schneider, 2019: Inter-product biases in global precipitation extremes. Environ. Res. Lett., 14, 125016, https://doi.org/10.1088/1748-9326/ab5da9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood, 2016: The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev., 9, 283305, https://doi.org/10.5194/gmd-9-283-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., D. G. Miralles, T. R. H. Holmes, and J. B. Fisher, 2019: Advances in the remote sensing of terrestrial evaporation. Remote Sens., 11, 1138, https://doi.org/10.3390/rs11091138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milliman, J. D., and K. L. Farnsworth, 2011: River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, 384 pp.

  • Miralles, D. G., R. A. M. De Jeu, J. H. Gash, T. R. H. Holmes, and A. J. Dolman, 2011: Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci., 15, 967981, https://doi.org/10.5194/hess-15-967-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and et al. , 2016: The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci., 20, 823842, https://doi.org/10.5194/hess-20-823-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., P. Gentine, S. I. Seneviratne, and A. J. Teuling, 2019: Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci., 1436, 1935, https://doi.org/10.1111/nyas.13912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, A. L., A. Rosenqvist, and B. Mora, 2017: Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manage., 12, 9, https://doi.org/10.1186/s13021-017-0078-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moesinger, L., W. Dorigo, R. de Jeu, R. van der Schalie, T. Scanlon, I. Teubner, and M. Forkel, 2020: The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data, 12, 177196, https://doi.org/10.5194/essd-12-177-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohan, C., A. W. Western, Y. Wei, and M. Saft, 2018: Predicting groundwater recharge for varying land cover and climate conditions—A global meta-study. Hydrol. Earth Syst. Sci., 22, 26892703, https://doi.org/10.5194/hess-22-2689-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moholdt, G., B. Wouters, and A. S. Gardner, 2012: Recent mass changes of glaciers in the Russian High Arctic. Geophys. Res. Lett., 39, L10502, https://doi.org/10.1029/2012GL051466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mokany, K., R. J. Raison, and A. S. Prokushkin, 2006: Critical analysis of root: Shoot ratios in terrestrial biomes. Global Change Biol., 12, 8496, https://doi.org/10.1111/j.1365-2486.2005.001043.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moninger, W. R., S. G. Benjamin, B. D. Jamison, T. W. Schlatter, T. L. Smith, and E. J. Szoke, 2010: Evaluation of regional aircraft observations using TAMDAR. Wea. Forecasting, 25, 627645, https://doi.org/10.1175/2009WAF2222321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreira, A. A., A. L. Ruhoff, D. R. Roberti, V. de Arruda Souza, H. R. Rocha, and R. C. D. de Paiva, 2019: Assessment of terrestrial water balance using remote sensing data in South America. J. Hydrol., 575, 131147, https://doi.org/10.1016/j.jhydrol.2019.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrow, R., and et al. , 2019: Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 15791594, https://doi.org/10.5194/tc-14-1579-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munier, S., and F. Aires, 2018: A new global method of satellite dataset merging and quality characterization constrained by the terrestrial water budget. Remote Sens. Environ., 205, 119130, https://doi.org/10.1016/j.rse.2017.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munier, S., F. Aires, S. Schlaffer, C. Prigent, F. Papa, P. Maisongrande, and M. Pan, 2014: Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi basin and closure correction model. J. Geophys. Res. Atmos., 119, 12 10012 116, https://doi.org/10.1002/2014JD021953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. National Academies Press, 186 pp.

    • Search Google Scholar
    • Export Citation
  • Ning, S., H. Ishidaira, and J. Wang, 2014: Statistical downscaling of grace-derived terrestrial water storage using satellite and GLDAS products. Ann. J. Hydraul. Eng., 70, 133138, https://doi.org/10.2208/jscejhe.70.I_133.

    • Search Google Scholar
    • Export Citation
  • Oki, T., 1999: The global water cycle. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney, Eds., Cambridge University Press, 1027.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, https://doi.org/10.1126/science.1128845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padrón, R. S., and et al. , 2020: Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci., 13, 477481, https://doi.org/10.1038/s41561-020-0594-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., and E. F. Wood, 2006: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter. J. Hydrometeor., 7, 534547, https://doi.org/10.1175/JHM495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., A. K. Sahoo, T. J. Troy, R. K. Vinukollu, J. Sheffield, and A. E. F. Wood, 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate, 25, 31913206, https://doi.org/10.1175/JCLI-D-11-00300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, S., and et al. , 2020: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci., 24, 14851509, https://doi.org/10.5194/hess-24-1485-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, F., and et al. , 2009: Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol., 50, 119126, https://doi.org/10.3189/172756410790595778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., and et al. , 2020: The Precipitation Inferred from Soil Moisture (PrISM) near real-time rainfall product: Evaluation and comparison. Remote Sens., 12, 481, https://doi.org/10.3390/rs12030481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellet, V., F. Aires, S. Munier, D. Fernández Prieto, G. Jordá, W. A. Dorigo, J. Polcher, and L. Brocca, 2019: Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle—Application to the Mediterranean region. Hydrol. Earth Syst. Sci., 23, 465491, https://doi.org/10.5194/hess-23-465-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellet, V., F. Aires, F. Papa, S. Munier, and B. Decharme, 2020: Long-term total water storage change from a satellite water cycle reconstruction over large southern Asian basins. Hydrol. Earth Syst. Sci., 24, 30333055, https://doi.org/10.5194/hess-24-3033-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Arancibia, J. L., L. A. Bruijnzeel, M. Mulligan, and A. I. J. M. van Dijk, 2019: Forests as ‘sponges’ and ‘pumps’: Assessing the impact of deforestation on dry-season flows across the tropics. J. Hydrol., 574, 946963, https://doi.org/10.1016/j.jhydrol.2019.04.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, J., and et al. , 2003: Good practice guidance for land use, land-use change and forestry. IPCC Rep., 590 pp.

  • Petersen, W., and et al. , 2016: GPM level 1 science requirements: Science and performance viewed from the ground. NASA Doc., 1 p., https://ntrs.nasa.gov/citations/20160012025.

    • Search Google Scholar
    • Export Citation
  • Petzold, A., and et al. , 2015: Global-scale atmosphere monitoring by in-service aircraft—Current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus, 67B, 28452, https://doi.org/10.3402/tellusb.v67.28452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, T., and et al. , 2020: Consistency of satellite climate data records for Earth system monitoring. Bull. Amer. Meteor. Soc., 101, E1948E1971, https://doi.org/10.1175/BAMS-D-19-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Preimesberger, W., T. Scanlon, C.-H. Su, A. Gruber, and W. Dorigo, 2020: Homogenization of structural breaks in the global ESA CCI soil moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens., 59, 28452862, https://doi.org/10.1109/TGRS.2020.3012896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., 2019: Asia’s shrinking glaciers protect large populations from drought stress. Nature, 569, 649654, https://doi.org/10.1038/s41586-019-1240-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prytherch, J., E. C. Kent, S. Fangohr, and D. I. Berry, 2015: A comparison of SSM/I-derived global marine surface-specific humidity datasets. Int. J. Climatol., 35, 23592381, https://doi.org/10.1002/joc.4150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., 2006: Mapping of snow water equivalent and snow depth in boreal and sub-Arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ., 101, 257269, https://doi.org/10.1016/j.rse.2006.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., and et al. , 2020: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581, 294298, https://doi.org/10.1038/s41586-020-2258-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raj, R. P., and et al. , 2020: Arctic sea level budget assessment during the GRACE/Argo time period. Remote Sens., 12, 2837, https://doi.org/10.3390/rs12172837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rast, M., J. Johannessen, and W. Mauser, 2014: Review of understanding of Earth’s hydrological cycle: Observations, theory and modelling. Surv. Geophys., 35, 491513, https://doi.org/10.1007/s10712-014-9279-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, R., L. Foglia, S. Mehl, T. Trautmann, D. Cáceres, and P. Döll, 2019: Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model. Geosci. Model Dev., 12, 24012418, https://doi.org/10.5194/gmd-12-2401-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and et al. , 2020: Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ., 242, 111769, https://doi.org/10.1016/j.rse.2020.111769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RGI, 2017: Randolph Glacier Inventory 6.0. RGI Tech. Rep., 71 pp., https://doi.org/10.7265/n5-rgi-60.

  • Robertson, F. R., and et al. , 2020: Uncertainties in ocean latent heat flux variations over recent decades in satellite-based estimates and reduced observation reanalyses. J. Climate, 33, 84158437, https://doi.org/10.1175/JCLI-D-19-0954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, https://doi.org/10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl, and C. R. Wilson, 2004: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31, L20504, https://doi.org/10.1029/2004GL020873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., E. B. McWilliams, J. S. Famiglietti, H. K. Beaudoing, and J. Nigro, 2011: Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Processes, 25, 40824092, https://doi.org/10.1002/hyp.8369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, https://doi.org/10.1175/JCLI-D-14-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M. H. Lo, 2018: Emerging trends in global freshwater availability. Nature, 557, 651659, https://doi.org/10.1038/s41586-018-0123-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadat-Noori, M., I. R. Santos, C. J. Sanders, L. M. Sanders, and D. T. Maher, 2015: Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. J. Hydrol., 528, 703719, https://doi.org/10.1016/j.jhydrol.2015.06.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahely, H. R., S. Dudding, and C. A. Kennedy, 2003: Estimating the urban metabolism of Canadian cities: Greater Toronto area case study. Can. J. Civ. Eng., 30, 468483, https://doi.org/10.1139/l02-105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., M. Pan, T. J. Troy, R. K. Vinukollu, J. Sheffield, and E. F. Wood, 2011: Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens. Environ., 115, 18501865, https://doi.org/10.1016/j.rse.2011.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltikoff, E., and et al. , 2019: An overview of using weather radar for climatological studies successes, challenges, and potential. Bull. Amer. Meteor. Soc., 100, 17391752, https://doi.org/10.1175/BAMS-D-18-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmied, H. M., and et al. , 2021: The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev., 14, 10371079, https://doi.org/10.5194/gmd-14-1037-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33, 13951409, https://doi.org/10.1029/95RG00184.

    • Crossref