Waves to Weather: Exploring the limits of predictability of weather

View More View Less
  • 1 a Ludwigs-Maximilians-Universität, Munich, Germany
  • | 2 b Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 3 c Johannes-Gutenberg-Universität, Mainz, Germany
© Get Permissions
Full access

Abstract

Prediction of weather is a main goal of atmospheric science. Its importance to society is growing continuously due to factors such as vulnerability to natural disasters, the move to renewable energy sources, and the risks of climate change. But prediction is also a major scientific challenge due to the inherently limited predictability of a chaotic atmosphere, and has led to a revolution in forecasting methods as we have moved to probabilistic prediction. These changes provide the motivation for Waves to Weather (W2W), a major national research program in Germany with three main university partners in Munich, Mainz, and Karlsruhe. We are currently in the second 4-year phase of our planned duration of 12 years and employ 36 doctoral and post-doctoral scientists. In the context of this large program, we address what we have identified to be the most important and challenging scientific questions in predictability of weather, namely upscale error growth, errors associated with cloud processes, and probabilistic prediction of high impact weather. This paper presents some key results of the first phase of W2W and discusses how they have influenced our understanding of predictability. The key role of interdisciplinary research linking atmospheric scientists with experts in visualization, statistics, numerical analysis, and inverse methods will be highlighted. To ensure a lasting impact on research in our field in Germany and internationally, we have instituted innovative programs for training and support of early career scientists, and to support education, equal opportunities, and outreach, which are also described here.

Corresponding author: George C. Craig, George.Craig@lmu.de

This article is included in the Waves to Weather (W2W) Special Collection.

Abstract

Prediction of weather is a main goal of atmospheric science. Its importance to society is growing continuously due to factors such as vulnerability to natural disasters, the move to renewable energy sources, and the risks of climate change. But prediction is also a major scientific challenge due to the inherently limited predictability of a chaotic atmosphere, and has led to a revolution in forecasting methods as we have moved to probabilistic prediction. These changes provide the motivation for Waves to Weather (W2W), a major national research program in Germany with three main university partners in Munich, Mainz, and Karlsruhe. We are currently in the second 4-year phase of our planned duration of 12 years and employ 36 doctoral and post-doctoral scientists. In the context of this large program, we address what we have identified to be the most important and challenging scientific questions in predictability of weather, namely upscale error growth, errors associated with cloud processes, and probabilistic prediction of high impact weather. This paper presents some key results of the first phase of W2W and discusses how they have influenced our understanding of predictability. The key role of interdisciplinary research linking atmospheric scientists with experts in visualization, statistics, numerical analysis, and inverse methods will be highlighted. To ensure a lasting impact on research in our field in Germany and internationally, we have instituted innovative programs for training and support of early career scientists, and to support education, equal opportunities, and outreach, which are also described here.

Corresponding author: George C. Craig, George.Craig@lmu.de

This article is included in the Waves to Weather (W2W) Special Collection.

Save