A record-breaking trans-Atlantic African dust plume associated with atmospheric circulation extremes in June 2020

View More View Less
  • 1 Department of Geography and Atmospheric Science, University of Kansas Lawrence, Kansas, 66045
© Get Permissions
Full access

Abstract

High concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during June 14–28, 2020, greatly degrading air quality over large areas of the Caribbean Basin and U.S. Daily PM2.5 concentrations exceeded 50 μg m−3 in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 States. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the U.S. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the U.S.

Corresponding author: Bing Pu, bpu@ku.edu

Abstract

High concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during June 14–28, 2020, greatly degrading air quality over large areas of the Caribbean Basin and U.S. Daily PM2.5 concentrations exceeded 50 μg m−3 in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 States. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the U.S. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the U.S.

Corresponding author: Bing Pu, bpu@ku.edu
Save