Association between the 11-Year Solar Cycle, the QBO, and the Atmosphere. Part II: Surface and 700 mb in the Northern Hemisphere in Winter

Harry Van Loon National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Harry Van Loon in
Current site
Google Scholar
PubMed
Close
and
Karin Labitzke Institut für Meteorologie, Freie Universität Berlin, Federal Republic of Germany

Search for other papers by Karin Labitzke in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Sea level pressure, surface air temperature, and 700-mb temperature and geopotential height show a probable association with the 11-year solar cycle which can be observed only if the data are divided according to the phase of the Quasi-Biennial Oscillation. The range of the response is as large as the interannual variability of the given element, and the correlations prove statistically meaningful when tested by Monte Carlo techniques. The sign of the correlations changes over the hemisphere on the spatial scale of extensive teleconnections. The correlations at 700 mb tend to be of opposite sign in the east and west years of the QBO, a result which Labitzke and van Loon also found in an analysis of the stratosphere. The pattern of correlation between the 700-mb heights on the Northern Hemisphere and the solar flux is the same as that of point-to-point correlations (teleconnections) between the 700-mb height at selected points and the heights at all other points. We interpret this similarity as a property of the atmosphere's internal dynamics, a favored resonance evoked within the atmosphere itself or by extraneous effects.

Abstract

Sea level pressure, surface air temperature, and 700-mb temperature and geopotential height show a probable association with the 11-year solar cycle which can be observed only if the data are divided according to the phase of the Quasi-Biennial Oscillation. The range of the response is as large as the interannual variability of the given element, and the correlations prove statistically meaningful when tested by Monte Carlo techniques. The sign of the correlations changes over the hemisphere on the spatial scale of extensive teleconnections. The correlations at 700 mb tend to be of opposite sign in the east and west years of the QBO, a result which Labitzke and van Loon also found in an analysis of the stratosphere. The pattern of correlation between the 700-mb heights on the Northern Hemisphere and the solar flux is the same as that of point-to-point correlations (teleconnections) between the 700-mb height at selected points and the heights at all other points. We interpret this similarity as a property of the atmosphere's internal dynamics, a favored resonance evoked within the atmosphere itself or by extraneous effects.

Save