• Aires, F., and W. B. Rossow, 2003: Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: Lorentz model case-study. Quart. J. Roy. Meteor. Soc., 129 , 239275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V., 2003: Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: A linear analysis. Climate Dyn., 20 , 775787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V., P. Langen, and J. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24 , 655666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and A. Slingo, 2002: Can current climate forcings explain the spatial and temporal signatures of decadal OLR variations? Geophys. Res. Lett., 29 .1141, doi:10.1029/2001GL014620.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., K. P. Shine, A. Slingo, and J. A. Pamment, 1999: The dependence of clear-sky outgoing longwave radiation on surface temperature and relative humidity. Quart. J. Roy. Meteor. Soc., 125 , 21032126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., V. Ramaswamy, and A. Slingo, 2002: A diagnostic analysis of atmospheric moisture and clear-sky radiative feedback in the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models. J. Geophys. Res., 107 .4329, doi:10.1029/2001JD001131.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., M. A. Ringer, and A. Slingo, 2003: Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water vapour channel radiances. Quart. J. Roy. Meteor. Soc., 129 , 33713389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224231.

  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65 , 11701185.

  • Bates, J. J., and D. L. Jackson, 2001: Trends in upper-tropospheric humidity. Geophys. Res. Lett., 28 , 16951698.

  • Bates, J. J., D. L. Jackson, F-M. Breon, and Z. D. Bergen, 2001: Variability of tropical upper tropospheric humidity 1979–1998. J. Geophys. Res., 106 , 3227132281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, M., A. D. Del Genio, and J. R. Lanzante, 2002: Observed and simulated temperature humidity relationships: Sensitivity to sampling and analysis. J. Climate, 15 , 203215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Harshvardhan, 1987: Thermodynamic constraint on the cloud liquid water feedback in climate models. J. Geophys. Res., 92 , 84838485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea-ice thinning in the Arctic ocean. J. Climate, 17 , 36223631.

  • Bitz, C. M., M. M. Holland, A. J. Weaver, and M. Eby, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106 , 24412463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blankenship, C., and T. T. Wilheit, 2001: SSM/T-2 measurements of regional changes in three-dimensional water vapour fields during ENSO events. J. Geophys. Res., 106 , 52395254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bode, H., 1945: Network Analysis and Feedback Amplifier Design. Van Nostrand, 551 pp.

  • Boer, G. J., and B. Yu, 2003a: Climate sensitivity and climate state. Climate Dyn., 21 , 167176.

  • Boer, G. J., and B. Yu, 2003b: Dynamical aspects of climate sensitivity. Geophys. Res. Lett., 30 .1135, doi:10.1029/2002GL016549.

  • Bony, S., and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 .L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J-P. Duvel, and H. L. Treut, 1995: Observed dependence of the water vapor and clear-sky greenhouse effect on sea surface temperature; comparison with climate warming experiments. Climate Dyn., 11 , 307320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., K-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10 , 20552077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., J-L. Dufresne, H. LeTreut, J-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22 , 7186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. Joussaume, O. Marti, and N. de Noblet, 1999: Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-holocene insolation. Geophys. Res. Lett., 26 , 24812484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C., R. Ferrari, and S. Legg, 2004: Climate Process Teams: A new approach to improving climate models. U.S. CLIVAR Var., 2 , 16.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. E. Peters, 2006: Comparison of simple and cloud-resolving models of moist convection-radiation interaction with a mock-Walker circulation. Theor. Comput. Fluid Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Brogniez, H., R. Roca, and L. Picon, 2005: Evaluation of the distribution of subtropical free tropospheric humidity in AMIP-2 simulations using METEOSAT water vapor channel data. Geophys. Res. Lett., 32 .L19708, doi:10.1029/2005GL024341.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., A. K. Jain, and M. I. Hoffert, 2003: Climate sensitivity uncertainty and the need for energy without CO2 emission. Science, 299 , 20522054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnell, R., and C. Senior, 1998: Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Climate Dyn., 14 , 369383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., 1975: Global climate change: An investigation of atmospheric feedback mechanisms. Tellus, 27 , 193198.

  • Cess, R., and Coauthors, 1990: Intercomparison and interpretation of cloud-climate feedback processes in nineteen atmospheric general circulation models. J. Geophys. Res., 95 , 1660116615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R., and Coauthors, 1991: Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253 , 888892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101 , 1279112794.

  • Chambers, L. H., B. Lin, and D. F. Young, 2002: Examination of new CERES data for evidence of tropical iris feedback. J. Climate, 15 , 37193726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295 , 838841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., and R. Seager, 1999: Climate and the tropical oceans. J. Climate, 12 , 33833401.

  • Clement, A. C., and B. Soden, 2005: The sensitivity of the tropical-mean radiation budget. J. Climate, 18 , 31893203.

  • Colman, R., 2001: On the vertical extent of atmospheric feedbacks. Climate Dyn., 17 , 391405.

  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20 , 865873.

  • Colman, R., 2004: On the structure of water vapour feedbacks in climate models. Geophys. Res. Lett., 31 .L21109, doi:10.1029/2004GL020708.

    • Search Google Scholar
    • Export Citation
  • Colman, R., S. Power, and B. McAvaney, 1997: Non-linear climate feedback analysis in an atmospheric GCM. Climate Dyn., 13 , 717731.

  • Cotton, W. R., 1990: Storms. Geophysical Science Series, Vol. 1, *ASTeR Press, 158 pp.

  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, D. Perovich, and J. O. Pinto, 2001: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J. Geophys. Res., 106 , D14. 1534515355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17 , 930951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and A. B. Wolf, 2000: The temperature dependence of the liquid water path of low clouds in the southern great plains. J. Climate, 13 , 34653486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmnetal conditions. J. Climate, 15 , 25972615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2000: Simulations of tropical upper tropospheric humidity. J. Geophys. Res., 105 , D15. 2015520163.

  • Dickinson, R. E., G. A. Meehl, and W. M. Washington, 1987: Ice-albedo feedback in a CO2-doubling simulation. Climate Change, 10 , 241248.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., and R. T. Pierrehumbert, 1996: Microphysical and Dynamical Control of Tropospheric Water Vapour. Vol. 35, Clouds, Chemistry and Climate, NATO ASI Series, Springer-Verlag, 17–28.

    • Crossref
    • Export Citation
  • Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56 , 17661782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., 2004: Sea-ice and its response to CO2 forcing as simulated by global climate models. Climate Dyn., 23 , 229241.

  • Folkins, I., K. K. Kelly, and E. M. Weinstock, 2002: A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics. J. Geophys. Res., 107 .4736, doi:10.1029/2002JD002185.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. D. F., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26 , 33093312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M. D. F., and M. Collins, 2004: Quantifying the water vapour feedback associated with post-Pinatubo cooling. Climate Dyn., 23 , 207214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., M. Baker, and D. L. Hartmann, 2002: Tropical cirrus and water vapour: An effective Earth infrared iris? Atmos. Chem. Phys., 2 , 3137.

  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16 , 28022805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16 , 28022805.

    • Search Google Scholar
    • Export Citation
  • Gray, D. M., and P. G. Landine, 1987: Albedo model for shallow prairie snow covers. Can. J. Earth Sci., 24 , 17601768.

  • Greenwald, T. J., G. L. Stephens, S. A. Christopher, and T. H. Vonder Haar, 1995: Observations of the global characteristics and regional radiative effects of marine cloud liquid water. J. Climate, 8 , 29282946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P., T. Karl, and R. Knight, 1994: Observed impact of snow cover on the heat balance and rise of continental spring temperatures. Science, 263 , 198200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17 , 15501568.

  • Hall, A., and S. Manabe, 1999: The role of water vapour feedback in unperturbed climate variability and global warming. J. Climate, 12 , 23272346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and S. Manabe, 2000: Suppression of ENSO in a coupled model without water vapor feedback. Climate Dyn., 16 , 393403.

  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33 .L03502, doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120 , 12091230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., A. Lahellec, and J-Y. Grandpeix, 2006: An elicitation of the dynamic nature of water vapor feedback in climate change using a 1D model. J. Atmos. Sci., 63 , 18781894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101 , 423428.

  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

    • Crossref
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , 68316864.

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95 , 1868718703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6 , 20492062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29 , 19511954.

  • Hartmann, D. L., and M. L. Michelsen, 2002: No evidence for Iris. Bull. Amer. Meteor. Soc., 83 , 249254.

  • Hartmann, D. L., M. Ockert-Bell, and M. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5 , 12811304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14 , 44954511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74 , 228241.

  • Held, I., and B. J. Soden, 2000: Water vapour feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21 , 221232.

  • Holland, M. M., C. M. Bitz, and A. J. Weaver, 2001: The influence of sea ice physics on simulations of climate change. J. Geophys. Res., 106 , 1963919655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 , 23982414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. J., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud systems. Advances in Geophysics, Vol. 24, Academic Press, 225–315.

    • Crossref
    • Export Citation
  • Hu, H., R. J. Oglesby, and B. Saltzman, 2000: The relationship between atmospheric water vapor and temperature in simulations of climate change. Geophys. Res. Lett., 27 , 35133516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough, 2003: Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model, CCM3, using modeled and observed HIRS radiances. J. Geophys. Res., 108 .4037, doi:10.1029/2002JD002539.

    • Search Google Scholar
    • Export Citation
  • Inamdar, A. K., V. Ramanathan, and N. G. Loeb, 2004: Satellite observations of the water vapor greenhouse effect and column longwave cooling rates: Relative roles of the continuum and vibration-rotation to pure rotation bands. J. Geophys. Res., 109 .D06104, doi:10.1029/2003JD003980.

    • Search Google Scholar
    • Export Citation
  • Ingram, W. J., 2002: On the robustness of the water vapor feedback: GCM vertical resolution and formulation. J. Climate, 15 , 917921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, 1989: Modeling climate change: An assessment of sea ice and surface albedo feedbacks. J. Geophys. Res., 94 , D6. 86098622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasa, Y., Y. Abe, and H. Tanaka, 2004: Global warming of the atmosphere in radiative-convective equilibrium. J. Atmos. Sci., 61 , 18941910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30 .2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., and K. P. Shine, 2003: A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Climate, 16 , 35253534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M., K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li, 2003: A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change. Climate Dyn., 20 , 843854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzfey, J. J., and K. L. Mcinnes, 1996: GCM simulations of eastern Australian cutoff lows. J. Climate, 9 , 23372355.

  • Keith, D. W., 2000: Stratosphere-troposphere exchange: Inferences from the isotopic composition of water vapor. J. Geophys. Res., 105 , D12. 1516715174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, M. A., and D. A. Randall, 2001: A two-box model of a zonal atmospheric circulation in the Tropics. J. Climate, 14 , 39443964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, M. A., D. A. Randall, and G. L. Stephens, 1999: A simple radiative-convective model with a hydrological cycle and interactive clouds. Quart. J. Roy. Meteor. Soc., 125A , 837869.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7 , 559565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version 2. J. Climate, 17 , 36663682.

  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10 , 20182039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127 , 25142531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 1995: The effect of enhanced greenhouse gas warming on winter cyclone frequencies and strengths. J. Climate, 8 , 14471452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61 , 16931710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K., and D. L. Hartmann, 2003: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part I: Sensitivity to uniform sea surface temperature changes. J. Climate, 16 , 14251440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12 , 23592374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K-M., C-H. Ho, and M-D. Chou, 1996: Water vapor and cloud feedback over tropical oceans: Can we use ENSO as a surrogate for climate change? Geophys. Res. Lett., 23 , 29712974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123 , 19842006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125 , 31723189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heveder, B., and M-N. Houssais, 2001: Investigating the variability of the arctic sea ice thickness in response to a stochastic thermodynamic atmospheric forcing. Climate Dyn., 17 , 107125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., B. A. Wielicki, L. H. Chambers, Y. Hu, and K-M. Xu, 2002: The Iris hypothesis: A negative or positive cloud feedback? J. Climate, 15 , 37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., T. Wong, B. A. Wielicki, and Y. Hu, 2004: Examination of the decadal tropical mean ERBS nonscanner radiation data for the Iris hypothesis. J. Climate, 17 , 12391246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, W. Y., and M. H. Zhang, 2004: Evaluation of clouds and their radiative effects simulated by the NCAR community atmospheric model against satellite observations. J. Climate, 17 , 33023318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71 , 288299.

  • Lindzen, R. S., M. D. Chou, and A. Y. Hou, 2001: Does the Earth have an adaptative infrared Iris? Bull. Amer. Meteor. Soc., 82 , 417432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., M. D. Chou, and A. Y. Hou, 2002: Comments on “no evidence for Iris.”. Bull. Amer. Meteor. Soc., 83 , 13451349.

  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17 , 45414563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 , 241259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85 , 55295554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsden, D., and F. P. J. Valero, 2004: Observations of water vapor greenhouse absorption over the Gulf of Mexico using aircraft and satellite data. J. Atmos. Sci., 61 , 745753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G., 1982: Large-scale heat exchange and ice production in the central arctic. J. Geophys. Res., 87 , 79717984.

  • McAvaney, B. J., and H. Le Treut, 2003: The cloud feedback model intercomparison project: CFMIP. CLIVAR Exchanges, No. 26 (Suppl.), International CLIVAR Project Office, Southampton, United Kingdom, 1–4.

  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14 , 27632768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M., and R. Toumi, 2004: Observed interannual variability of tropical troposphere relative humidity. J. Climate, 17 , 31813191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. Boer, C. Covey, M. Latif, and R. Stouffer, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81 , 313318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Minschwaner, K., and A. E. Dessler, 2004: Water vapor feedback in the tropical upper troposphere: Model results and observations. J. Climate, 17 , 12721282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minschwaner, K., A. E. Dessler, and P. Sawaengphokhai, 2006: Multimodel analysis of the water vapor feedback in the tropical upper troposphere. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., and A. Clement, 2005: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 32 .L03809, doi:10.1029/2004GL021765.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., and W. J. Ingram, 1992: Carbon dioxide and climate: Mechanisms of changes in cloud. J. Climate, 5 , 521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moyer, E. J., F. W. Irion, Y. L. Yung, and M. Gunson, 1996: ATMOS stratospheric deuterated water and implications for troposphere-stratosphere transport. Geophys. Res. Lett., 23 , 23852388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. Collins, and D. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 429 , 768772.

    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., and J. Stroeve, 1997: The changing albedo of the Greenland ice sheet: Implications for climate modeling. Ann. Glaciol., 25 , 5157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998a: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11 , 369382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998b: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11 , 383403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13 , 245256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14 , 25402550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18 , 48624878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRC, 2003: Understanding Climate Change Feedbacks. National Academies Press, 152 pp.

  • Paciorek, C. J., J. S. Risbey, V. Ventura, and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15 , 15731590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and Coauthors, 1999: SHEBA: Snow and Ice Studies. Cold Regions Research and Engineering Laboratory Tech. Rep., CD-ROM.

  • Perovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107 .8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., and C. Bretherton, 2005: A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud–radiative feedbacks. J. Climate, 18 , 42164234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and R. Roca, 1998: Evidence for control of Atlantic subtropical humidity by large scale advection. Geophys. Res. Lett., 25 , 45374540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, G. L., and R. D. Cess, 2004: Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109 .D02106, doi:10.1029/2003JD004018.

    • Search Google Scholar
    • Export Citation
  • Qu, X., and A. Hall, 2005: Surface contribution to planetary albedo variability in cryosphere regions. J. Climate, 18 , 52395252.

  • Qu, X., and A. Hall, 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19 , 26172630.

  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, and D. L. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99 , 2075720771.

  • Randall, D., and Coauthors, 2003: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84 , 455469.

  • Rennó, N., K. A. Emanuel, and P. Stone, 1994: Radiative-convective model with an explicit hydrological cycle. Part I: Formulation and sensitivity to model parameters. J. Geophys. Res., 99 , 1442914441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., and P. Lonergan, 1995: Modelled impacts of stratospheric ozone and water vapour perturbations with implications for high-speed civil transport aircraft. J. Geophys. Res., 100 , 73817396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Healy, C. Parkinson, and D. Martinson, 1995: The role of sea ice in 2 × CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent. J. Climate, 8 , 449463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and R. P. Allan, 2004: Evaluating climate model simulations of tropical clouds. Tellus, 56A , 308327.

  • Robock, A., 1983: Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J. Atmos. Sci., 40 , 986997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 2003: How water enters the stratosphere. Science, 302 , 16911692.

  • Rosenlof, K. H., A. F. Tuck, K. K. Kelly, J. M. Russell, and M. P. McCormick, 1997: Hemispheric asymmetries in water vapour and inferences about transport in the lower stratosphere. J. Geophys. Res., 102 , 1321313234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, R. J., W. P. Elliott, and D. J. Seidel, 2002: Lower-tropospheric humidity–temperature relationships in radiosonde observations and atmospheric general circulation models. J. Hydrometeor., 3 , 2638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309 , 15511556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., B. P. Kirtman, and R. S. Lindzen, 1999: Tropospheric water vapor and climate sensitivity. J. Atmos. Sci., 56 , 16491658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time dependence of climate sensitivity. Geophys. Res. Lett., 27 , 26852688.

  • Sherwood, S. C., 1996: Maintenance of the free-tropospheric tropical water vapor distribution. Part II: Simulation by large-scale advection. J. Climate, 9 , 29192934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2000: On the control of stratospheric humidity. Geophys. Res. Lett., 27 , 25132516.

  • Shine, K. P., and A. Sinha, 1991: Sensitivity of the earth’s climate to height dependent changes in the water vapor mixing ratio. Nature, 354 , 382384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M., and I. Watterson, 1999: Objective assessment of extratropical weather systems in simulated climates. J. Climate, 12 , 34673485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., K. I. Hodges, and G. J. Robinson, 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130 , 14491467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15 , 27022706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The sensitivity of the tropical hydrological cycle to ENSO. J. Climate, 13 , 538549.

  • Soden, B. J., 2004: The impact of tropical convection and cirrus on upper tropospheric humidity: A Lagrangian analysis of satellite measurements. Geophys. Res. Lett., 31 .L20104, doi:10.1029/2004GL020980.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and S. R. Schroeder, 2000: Decadal variations in tropical water vapor. J. Climate, 13 , 33373341.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

  • Soden, B. J., R. Wetherald, G. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296 , 727730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17 , 36613665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somerville, R. C. J., and L. A. Remer, 1984: Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res., 89 , 96689672.

  • Spelman, M. J., and S. Manabe, 1984: Influence of oceanic heat transport upon the sensitivity of a model climate. J. Geophys. Res., 89 , 571586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 1997: How dry is the tropical free troposphere? Implications for global warming theory. Bull. Amer. Meteor. Soc., 78 , 10971106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stainforth, D., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 429 , 768772.

    • Search Google Scholar
    • Export Citation
  • Stein, U., and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50 , 21072115.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T., and Coauthors, 2001: Physical climate processes and feedbacks. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 419–470.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. J. Atmos. Sci., 36 , 415423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowasser, M., K. Hamilton, and G. J. Boer, 2006: Local and global climate feedbacks in models with differing climate sensitivities. J. Climate, 19 , 193209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuber, N., M. Ponater, and R. Sausen, 2001: Is the climate sensitivity to ozone perturbations enhanced by stratospheric water vapor feedback? Geophys. Res. Lett., 28 , 28872890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D-Z., C. Covey, and R. S. Lindzen, 2001: Vertical correlations of water vapor in GCMs. Geophys. Res. Lett., 28 , 259262.

  • Taylor, K. E., and S. J. Ghan, 1992: An analysis of cloud liquid water feedback and global climate sensitivity in a general circulation model. J. Climate, 5 , 907919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndike, A., D. S. Rothrock, G. Maykut, and R. Colony, 1975: The thickness distribution of sea ice. J. Geophys. Res., 80 , 45014513.

  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109 .D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1999: Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Climate, 12 , 462476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and K. A. Emanuel, 2000: Simulated equilibrium tropical temperature and water vapor profiles and their sensitivity to vertical resolution. Quart. J. Roy. Meteor. Soc., 126 , 12191238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapour. Climate Dyn., 24 , 741758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 1994: Global, multiyear variations of optical thickness with temperature in low and cirrus clouds. Geophys. Res. Lett., 21 , 22112214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107 .4781, doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2006: Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33 .L02704, doi:10.1029/2005GL024513.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., A. Del Genio, W. Kovari Jr., and M-S. Yao, 1998: Temperature dependence of low cloud optical thickness in the GISS GCM: Contributing mechanisms and climate implications. J. Climate, 11 , 32683281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y-C. Zhang, and W. R. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13 , 312327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., and S. Manabe, 2001: Influence of cloud feedback on annual variation of global mean surface temperature. J. Geophys. Res., 106 , D19. 2263522646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., A. Abe-Ouchi, and S. Manabe, 2005: Radiative damping of annual variation in global mean surface temperature: Comparison between observed and simulated feedback. Climate Dyn., 24 , 591597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17 , 603615.

  • Volodin, E. M., 2004: Relation between the global-warming parameter and the heat balance on the Earth’s surface at increased contents of carbon dioxide. Izv. Atmos. Oceanic Phys., 40 , 269275.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and R. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Washington, W. W., and G. A. Meehl, 1986: General circulation model CO2 sensitivity experiments: Snow-sea ice albedo parameterizations and globally averaged surface air temperature. Climate Change, 8 , 231241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2003: Efficiency of storm tracks, an important climate parameter? The role of cloud radiative forcing in poleward heat transport. J. Geophys. Res., 108 .4018, doi:10.1029/2002JD002756.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and V. Ramanathan, 1996: The link between summertime cloud radiative forcing and extratropical cyclones in the North Pacific. J. Climate, 9 , 20932109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17 , 905922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27 , 1738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, C. R., and A. J. Heymsfield, 2003: Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science, 302 , 17421746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403 , 414416.

  • Wetherald, R., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45 , 13971415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295 , 841844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., M. A. Ringer, and C. A. Senior, 2003: Evaluating the cloud response to climate change and current climate variability. Climate Dyn., 20 , 705721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2006: Evaluation of a component of the cloud response to climate change in an intercomparison of climate models. Climate Dyn., 145 , 145165.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2006: Surface albedo feedback estimates for the AR4 climate models. J. Climate, 19 , 359365.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower tropospheric stability. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of ice microphysics on cloud–radiation interaction. J. Atmos. Sci., 56 , 31773195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Z. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of tropical cloud properties and responses in GCMs using mid-tropospheric vertical velocity. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117 , 14711479.

  • Yang, F., A. Kumar, W. Wang, H. Juang, and M. Kanamitsu, 2001: Snow-albedo feedback and seasonal climate variability over North America. J. Climate, 14 , 42454248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, M. E. Schlesinger, and W. Wang, 2003: Intensity of hydrological cycles in warmer climates. J. Climate, 16 , 24192423.

  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the Tropics. Mon. Wea. Rev., 129 , 784801.

  • Yao, M-S., and A. D. Del Genio, 2002: Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. Part II: Sea surface temperature and cloud feedbacks. J. Climate, 15 , 24912503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yu, W., M. Doutriaux, G. Sèze, H. L. Treut, and M. Desbois, 1996: A methodology study of the validation of clouds in GCMs using ISCCP satellite observations. Climate Dyn., 12 , 389401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7 , 17191736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. J. Hack, J. T. Kiehland, and R. D. Cess, 1994: Diagnostic study of climate feedback processes in atmospheric general circulation models. J. Geophys. Res., 99 , 55255537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110 .D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y-C., and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10 , 23582373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • View in gallery
    Fig. 1.

    Comparison of GCM climate feedback parameters (in W m−1 K−1) for water vapor (WV), cloud (C), surface albedo (A), lapse rate (LR), and the combined water vapor + lapse rate (WV + LR). ALL represents the sum of all feedbacks. Results are taken from Colman (2003; in blue), Soden and Held (2006, in red), and Winton (2006, in green). Closed and open symbols from Colman (2003) represent calculations determined using the PRP and the RCM approaches, respectively. Crosses represent the water vapor feedback computed for each model from Soden and Held (2006) assuming no change in relative humidity. Vertical bars depict the estimated uncertainty in the calculation of the feedbacks from Soden and Held (2006).

  • View in gallery
    Fig. 2.

    Composite of instantaneous infrared imagery from geostationary satellites (at 1200 UTC 29 Mar 2004) showing the contrast between the large-scale organization of the atmosphere and of the cloudiness in the Tropics and in the extratropics. [From SATMOS (©METEO-FRANCE and Japan Meteorological Agency)]

  • View in gallery
    Fig. 3.

    Two conceptual representations of the relationship between cloudiness and large-scale atmospheric circulation in the Tropics: (a) structure of the tropical atmosphere, showing the various regimes, approximately as a function of SST (decreasing from left to right) or mean large-scale vertical velocity in the midtroposphere (from mean ascending motions on the left to large-scale sinking motions on the right). [From Emanuel (1994).] (b) Two-box model of the Tropics used by Larson et al. (1999). The warm pool has high convective clouds and the cold pool has boundary layer clouds. Air is rising in the warm pool and sinking across the inversion in the cold pool.

  • View in gallery
    Fig. 4.

    (a) PDF Pω of the 500-hPa monthly mean large-scale vertical velocity ω500 in the Tropics (30°S–30°N) derived from ERA-40 meteorological reanalyses, and composite of the monthly mean (b) GPCP precipitation and (c) ERBE-derived longwave and shortwave (multiplied by −1) cloud radiative forcing in different circulation regimes defined from ERA-40 ω500 over 1985–89. Vertical bars show the seasonal standard deviation within each regime. [After Bony et al. (2004)]

  • View in gallery
    Fig. 5.

    (top) Schematic of a mature extratropical cyclone represented in the horizontal plane. Shaded areas are regions of precipitation. [From Cotton (1990).] (bottom) Schematic vertical cross section through an extratropical cyclone along the dashed line reported in the top showing typical cloud types and precipitation. [From Cotton (1990), after Houze and Hobbs (1982)]

  • View in gallery
    Fig. 6.

    Composite spatial distributions of 1000-hPa wind (arrows), SST (nearly horizontal lines), 500-hPa pressure vertical velocity (other solid and dashed lines), and ISCCP cloud anomalies (color) centered on locations within the region 30°–50°N, 155°–215°E where advection of the 1000-hPa wind over the SST gradient (−V · ∇SST) is (a) maximum positive during July, (b) maximum positive during January, (c) maximum negative during July, and (d) maximum negative during January. Composites were constructed from local noon data during 1984–2001. The SST contour interval is 2°C with a thick line for the 16°C isotherm. The vertical velocity contour interval is 20 hPa day−1 for July and 40 hPa day−1 for January with negative (upward) contours dashed, positive (downward) contours solid, and no zero contour. Each 2.5° × 2.5° grid box in the plot is filled with 25 pixels, and each pixel represents an additional 2% cloud amount or clear-sky frequency beyond the climatological value for the ISCCP category associated with that color (see legend in figure). Only cloud anomalies statistically significant at 95% are shown, and negative cloud anomalies are not plotted. [From Norris and Iacobellis (2005)]

  • View in gallery
    Fig. 7.

    Number of storm tracks per 90-day December–January–February season in each central pressure band (pr, pressure at storm center − 1000 hPa). Dark, medium dark, medium light, and light shadings (first, second, third, and fourth peak from left of each group) show the change in the number of storms (relative to the control experiment) in the experiment forced by both greenhouse gases and the direct effect of aerosols (SUL) or by only greenhouse gases (GHG) for two different time periods. Horizontal bars at the end of peaks show changes that are significant at the 1% level. [From Carnell and Senior (1998)]

  • View in gallery
    Fig. 8.

    Composites of the ERBE (a), (b) SW, (c), (d) LW, (e), (f) and NET cloud radiative forcing difference between the upper (warm) and lower (cold) SST terciles for July and January during 1985–89 in ω500 and advection intervals over the North Pacific (25°–55°N, 145°–225°E). The magnitude of SW CRF decrease with rising temperature under most conditions of vertical velocity and SST advection (the advection of the 1000-hPa wind over the SST gradient). The cloud amount and optical thickness also decrease with rising temperature (not shown). The magnitude of LW CRF decreases, but the change in SW CRF is larger, so net CRF becomes less negative (or more positive) with warmer temperature. [From Norris and Iacobellis (2005)]

  • View in gallery
    Fig. 9.

    Sensitivity (in W m−2 K−1) of the tropical (30°S–30°N) NET, SW, and LW CRF to SST changes associated with climate change (in a scenario in which the CO2 increases by 1% yr−1) derived from 15 coupled ocean–atmosphere GCMs participating in the AR4. The sensitivity is computed for different regimes of the large-scale atmospheric circulation (the 500-hPa large-scale vertical pressure velocity is used as a proxy for large-scale motions, negative values corresponding to large-scale ascent and positive values to large-scale subsidence). Results are presented for two groups of GCMs: models that predict a positive anomaly of the tropically averaged NET CRF in climate change (in red, eight models) and models that predict a negative anomaly (in blue, seven models). [From Bony and Dufresne (2005).]

  • View in gallery
    Fig. 10.

    Global change in the (left) NET, (middle) SW, and (right) LW CRF normalized by the change in global mean surface air temperature predicted by AR4 mixed layer ocean atmosphere models in 2xCO2 equilibrium experiments. For each panel, results (in W m−2 K−1) are shown for global (GL), tropical (TR, 30°S–30°N) and extratropical (EX) areas. The intermodel spread of the global CRF response to climate warming primarily arises from different model predictions of the change in tropical SW CRF. (Adapted from WEBB.)

  • View in gallery
    Fig. 11.

    (a) (top) ISCCP monthly mean cloud frequency sorted using the ω500 from ECMWF analysis, and divided into ISCCP cloud thickness categories: thin (0.02 ≤ τ ≤ 3.6), intermediate (3.6 ≤ τ ≤ 23), thick (τ ≥ 23), and (d) all optical depths. (bottom) Monthly mean cloud frequency from the ISCCP simulator for an AMIP simulation of (b) NCAR CAM 3.0 and (c) GFDL AM2.12b climate models over the period 1984–2000, sorted by ω500 and using similar thickness categories. (From WYANT)

  • View in gallery
    Fig. 12.

    (a) Progressive humidity profiles computed by reducing the free-tropospheric specific humidity of the Air Force Geophysical Laboratory profile between 800 and 100 hPa by multiplicative factors of 1.0, 0.4, 0.2, 0.1, and 0.05. This results in height-weighted average relative humidities in the free troposphere of 31%, 13%, 6%, 3%, and 1.6%, respectively. (b) Sensitivity of outgoing LW radiation to additive changes of relative humidity of 3% in 10-hPa-thick layers as a function of the humidity profiles shown in (a). (c) The nonlinear dependence of clear-sky outgoing LW radiation over this range of free-tropospheric relative humidity. [From Spencer and Braswell (1997)]

  • View in gallery
    Fig. 13.

    Illustration of Lagrangian trajectories through the atmosphere, showing the importance of microphysical processes in determining the water content of air. Diagram extends from (left) equator to (right) high latitudes and extends from surface to lower stratosphere. White clouds represent cumuli while the dark cloud represents sloping ascent in baroclinic systems. The total water content of air flowing out of clouds is set by the fraction of condensed water converted to precipitation, and subsequent moistening in the general subsiding branch is governed by detrainment from shallower clouds and by evaporation of precipitation. [From Emanuel and Zivkovic-Rothman (1999)]

  • View in gallery
    Fig. 14.

    Interannual variations in (a) surface temperature, (b) column-integrated water vapor, (c) atmospheric normalized greenhouse trapping, and (d) 6.7-μm brightness temperature for the SST-forced model (shaded), model with all known forcings (dashed), and observations (solid). Substantial differences between SST only forced experiments and “full forcing” experiments in (c) indicate that the model normalized greenhouse effect is very sensitive to the input of volcanic aerosols and changes in greenhouse gases. [From Allan et al. (2003)]

  • View in gallery
    Fig. 15.

    Comparison of the observed (black) and GCM-simulated (blue) changes in global-mean (90°S–90°N) 6.7-μm brightness temperature (Tb6.7). The observed anomalies are computed with respect to a 1979–90 base climatology and expressed relative to their preemption (January–May 1991) value. The GCM-simulated anomalies are computed as the ensemble-mean difference (Pinatubo − control) from three pairs of GCM simulations. The green curve depicts the GCM-simulated Tb6.7 computed under the assumption of a constant relative humidity change. The red curve depicts the GCM-simulated Tb6.7 computed under the assumption of a constant, seasonally varying water vapor mixing ratio (i.e., no drying of the upper troposphere). The thick lines depict the 7-month running mean of each time series. [From Soden et al. (2002)]

  • View in gallery
    Fig. 16.

    Estimates of water vapor feedback parameter (in W m−2 K−1) from the observations and from the HadCM3 climate model (note that the sign convention used in this figure for the definition of feedback parameters is opposite to that used in appendix A). The histogram is computed from 82 model estimates with a bin size of 0.5 and is shown in terms of probabilities. The shaded curve is a fitted normal distribution of model estimates with the 5% and 95% represented by darker shading. Observed estimates of the water vapor feedback parameter are indicated by the vertical lines, and lie in the range 0.9–2.5 W m−2 K−1 (using the sign convention of appendix A, i.e., positive feedbacks have positive sign). [From Forster and Collins (2004)]

  • View in gallery
    Fig. 17.

    The normalized zonally averaged surface air temperature change from 17 models participating in the AR4 of the IPCC. The temperature change is computed as the 2080–99 average from the so-called SRES AlB scenario minus the 1980–99 average from climate of the twentieth-century simulations. The zonally averaged change is normalized by the global average surface air temperature change.