Abstract
Measurement of climatic-scale precipitation (defined here as averages over areas of >104 km2 and periods of five days or longer) is impractical for many areas of the earth without the use of space-based observations. We briefly discuss the history of satellite rainfall estimation schemes and their application to climate studies. Two approaches—direct and indirect—have dominated work until very recently, when attempts to use more integrated techniques began. Indirect schemes, primarily based on visible and infrared (IR) observations of the characteristics of clouds, have been used in the majority of such studies. Direct schemes, such as those that use microwave observations of raindrop-sized hydrometeors, have been limited by a relative lack of the required measurements. A large number of studies have used datasets not originally intended as precipitation estimates at all, such as the NOAA outgoing longwave radiation data, to produce estimates of very large scale rainfall. Current and prospective attempts to overcome some of the difficulties affecting climatic-scale precipitation estimation are described. The Global Precipitation Climatology Project will integrate data from surface obserations, geostationary IR sensors, and polar-orbiting microwave and IR sensors to produce near-global analyses of monthly rainfall. The proposed Tropical Rainfall Measuring Mission will use a single satellite with an instrument package that will make visible, IR, and microwave radiometric observations. The package will also include a precipitation radar. We discuss certain other proposed satellite missions and international programs and their contributions to the production of climatic-scale precipitation estimates. Finally, we propose the development of a global rainfall analysis system.