Global Climatic Anomalies Associated with Extremes in the Southern Oscillation

George N. Kiladis Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
and
Henry F. Diaz National Oceanic and Atmospheric Administration, Environmental Research Laboratory, Boulder, Colorado

Search for other papers by Henry F. Diaz in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Composite temperature and precipitation anomalies during various stages of an event in the Southern Oscillation (SO) have been computed for several hundred stations across the globe. Large regions of coherent, significant signals are shown to exist for both extremes of the SO, with warm event signals generally opposite to those during cold events. In addition, during the year preceding the development of an event in the SO (year −1), climatic anomalies tend to be opposite to those during the following year (year 0). This confirms that the biennial tendency of the SO over the Pacific/Indian ocean sectors is also present in more remote regions with climatic signals related to the SO. Many of the signals are consistent enough from event to event to be useful for extended range forecasting purposes.

Abstract

Composite temperature and precipitation anomalies during various stages of an event in the Southern Oscillation (SO) have been computed for several hundred stations across the globe. Large regions of coherent, significant signals are shown to exist for both extremes of the SO, with warm event signals generally opposite to those during cold events. In addition, during the year preceding the development of an event in the SO (year −1), climatic anomalies tend to be opposite to those during the following year (year 0). This confirms that the biennial tendency of the SO over the Pacific/Indian ocean sectors is also present in more remote regions with climatic signals related to the SO. Many of the signals are consistent enough from event to event to be useful for extended range forecasting purposes.

Save