Alexander, M. A., 1990: Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Climate Dyn., 5, 53–65, doi:10.1007/BF00195853.
Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5, 944–958, doi:10.1175/1520-0442(1992)005<0944:MAIDEN>2.0.CO;2.
Alexander, M. A., 2010: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation. Climate Dynamics: Why Does Climate Vary?, Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 123–148.
Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122–137, doi:10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.
Alexander, M. A., and J. D. Scott, 2008: The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO. J. Climate, 21, 5688–5707, doi:10.1175/2008JCLI2382.1.
Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 2419–2431, doi:10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2.
Alexander, M. A., M. S. Timlin, and J. D. Scott, 2001: Winter-to-winter recurrence of sea surface temperature, salinity and mixed layer depth anomalies. Prog. Oceanogr., 49, 41–61, doi:10.1016/S0079-6611(01)00015-5.
Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
Alexander, M. A., N.-C. Lau, and J. D. Scott, 2004: Broadening the atmospheric bridge paradigm: ENSO teleconnections to the North Pacific in summer and to the tropical west Pacific–Indian Oceans over the seasonal cycle. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, 85–104.
Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385–402, doi:10.1175/2007JCLI1849.1.
Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901, doi:10.1175/2010JCLI3205.1.
An, S. I., J.-S. Kug, A. Timmermann, I.-S. Kang, and O. Timm, 2007: The influence of ENSO on the generation of decadal variability in the North Pacific. J. Climate, 20, 667–680, doi:10.1175/JCLI4017.1.
Ault, T., C. Deser, M. Newman, and J. Emile-Geay, 2013: Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys. Res. Lett., 40, 3450–3456, doi:10.1002/grl.50647.
Baines, P. G., and C. K. Folland, 2007: Evidence for a rapid global climate shift across the late 1960s. J. Climate, 20, 2721–2744, doi:10.1175/JCLI4177.1.
Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 1132–1161, doi:10.1002/qj.2063.
Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 2105–2128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.
Barnett, T., D. W. Pierce, M. Latif, D. Dommonget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and the midlatitudes in the Pacific basin. Geophys. Res. Lett., 26, 615–618, doi:10.1029/1999GL900042.
Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477–493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.
Bellenger, H., É. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, doi:10.1007/s00382-013-1783-z.
Beran, J., 1994: Statistics for Long-Memory Processes.Chapman and Hall, 315 pp.
Bhatt, U. S., M. A. Alexander, D. S. Battisti, D. D. Houghton, and L. M. Keller, 1998: Atmosphere–ocean interaction in the North Atlantic: Near-surface climate variability. J. Climate, 11, 1615–1632, doi:10.1175/1520-0442(1998)011<1615:AOIITN>2.0.CO;2.
Biondi, F., A. Gershunov, and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 5–10, doi:10.1175/1520-0442(2001)014<0005:NPDCVS>2.0.CO;2.
Bladé, I., 1997: The influence of midlatitude coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 2087–2106, doi:10.1175/1520-0442(1997)010<2087:TIOMOA>2.0.CO;2.
Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno, 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30, 2183, doi:10.1029/2003GL018597.
Brown, D. P., and A. C. Comrie, 2004: A winter precipitation “dipole” in the western United States associated with multidecadal ENSO variability. Geophys. Res. Lett., 31, L09203, doi:10.1029/2003GL018726.
Capotondi, A., M. A. Alexander, and C. Deser, 2003: Why are there Rossby wave maxima at 10°S and 13°N in the Pacific? J. Phys. Oceanogr., 33, 1549–1563, doi:10.1175/2407.1.
Capotondi, A., M. A. Alexander, C. Deser, and M. McPhaden, 2005: Anatomy and decadal evolution of the Pacific subtropical cells. J. Climate, 18, 3739–3758, doi:10.1175/JCLI3496.1.
Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, doi:10.1175/BAMS-D-13-00117.1.
Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017, doi:10.1175/2007MWR1978.1.
Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354–369, doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.
Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757–784, doi:10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.
Chen, X. Y., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 9623–9641, doi:10.1175/JCLI-D-15-0322.1.
Chiang, J. C. H., and D. J. Vimont, 2004: Analogous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J. Climate, 17, 4143–4158, doi:10.1175/JCLI4953.1.
Clarke, A. J., and S. Van Gorder, 1994: On ENSO coastal currents and sea levels. J. Phys. Oceanogr., 24, 661–680, doi:10.1175/1520-0485(1994)024<0661:OECCAS>2.0.CO;2.
Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460–464, doi:10.1126/science.1171255.
Compo, G., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 1957–1978, doi:10.1175/2009JCLI2735.1.
Cook, B. I., J. E. Smerdon, R. Seager, and E. R. Cook, 2014: Pan-continental droughts in North America over the last millennium. J. Climate, 27, 383–397, doi:10.1175/JCLI-D-13-00100.1.
Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill, and G. Funkhouser, 1995: The segment length curse in long tree-ring chronology development for paleoclimatic studies. Holocene, 5, 229–237, doi:10.1177/095968369500500211.
Dai, A., 2012: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633–646, doi:10.1007/s00382-012-1446-5.
D’Arrigo, R., and R. Wilson, 2006: On the Asian expression of the PDO. Int. J. Climatol., 26, 1607–1617, doi:10.1002/joc.1326.
D’Arrigo, R., R. Villalba, and G. Wiles, 2001: Tree-ring estimates of Pacific decadal climate variability. Climate Dyn., 18, 219–224, doi:10.1007/s003820100177.
Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.
Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8, 1677–1680, doi:10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2.
Deser, C., and M. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393–408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.
Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9, 1840–1855, doi:10.1175/1520-0442(1996)009<1840:UOTVIT>2.0.CO;2.
Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 1697–1706, doi:10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.
Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 57–72, doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.
Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 3109–3124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.
Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 2622–2651, doi:10.1175/JCLI-D-11-00301.1.
Di Lorenzo, E., and Coauthors, 2008: North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.
Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific. Nat. Geosci., 3, 762–765, doi:10.1038/ngeo984.
Di Lorenzo, E., and Coauthors, 2013: Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography, 26, 68–81, doi:10.5670/oceanog.2013.76.
Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 9440–9448, doi:10.1002/2015gl066281.
Ebbesmeyer, C. C., D. R. Cayan, D. R. McLain, F. H. Nichols, D. H. Peterson, and K. T. Redmond, 1991: 1976 step in the Pacific climate: Forty environmental changes between 1968–1975 and 1977–1985. Proc. Seventh Annual Pacific Climate Workshop, Asilomar, CA, California Dept. of Water Research, 115–126. [Available online at http://aquaticcommons.org/4562/1/EbbesmeyerEtal_1990_ProcPacCLIM7th_pp115-126.pdf.]
Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557–588, doi:10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.
Felis, T., A. Suzuki, H. Kuhnert, N. Rimbu, and H. Kawahata, 2010: Pacific decadal oscillation documented in a coral record of North Pacific winter temperature since 1873. Geophys. Res. Lett., 37, L14605, doi:10.1029/2010GL043572.
Fleming, S. W., 2009: Exploring the nature of Pacific climate variability using a “toy” nonlinear stochastic model. Can. J. Phys., 87, 1127–1131, doi:10.1139/P09-095.
Fleming, S. W., 2014: A non-uniqueness problem in the identification of power-law spectral scaling for hydroclimatic time series. Hydrol. Sci. J., 59, 73–84, doi:10.1080/02626667.2013.851384.
Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, doi:10.1029/2001GL014201.
Fraedrich, K., U. Luksch, and R. Blender, 2004: 1/f model for long-time memory of the ocean surface temperature. Phys. Rev. E, 70, 037301, doi:10.1103/PhysRevE.70.037301.
Frankignoul, C., 1999: A cautionary note on the use of statistical atmospheric models in the middle latitudes: Comments on “Decadal variability in the North Pacific as simulated by a hybrid coupled model.” J. Climate, 12, 1871–1872, doi:10.1175/1520-0442(1999)012<1871:ACNOTU>2.0.CO;2.
Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289–305, doi:10.1111/j.2153-3490.1977.tb00740.x.
Frankignoul, C., and R. W. Reynolds, 1983: Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr., 13, 1131–1145, doi:10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2.
Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 1533–1546, doi:10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.
Frankignoul, C., N. Sennechael, Y. Kwon, and M. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762–777, doi:10.1175/2010JCLI3731.1.
Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 3049–3067, doi:10.1175/2010JCLI3584.1.
Gedalof, Z., and D. J. Smith, 2001: Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys. Res. Lett., 28, 1515–1518, doi:10.1029/2000GL011779.
Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2725, doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.
Giannakis, D., and A. J. Majda, 2012: Limits of predictability in the North Pacific sector of a comprehensive climate model. Geophys. Res. Lett., 39, L24602, doi:10.1029/2012GL054273.
Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.
Goodrich, G. B., and J. M. Walker, 2011: The influence of the PDO on winter precipitation during high- and low-index ENSO conditions in the eastern United States. Phys. Geogr., 32, 295–312, doi:10.2747/0272-3646.32.4.295.
Graham, N. E., 1994: Decadal-scale climate variability in the 1970s and 1980s: Observations and model results. Climate Dyn., 10, 135–159, doi:10.1007/BF00210626.
Granger, C. W. J., 1980: Long memory relationships and the aggregation of dynamic models. J. Econom., 14, 227–238, doi:10.1016/0304-4076(80)90092-5.
Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805–807, doi:10.1126/science.275.5301.805.
Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, 21, 2790–2809, doi:10.1175/2007JCLI2076.1.
Guemas, V., F. J. Doblas-Reyes, F. Lienert, Y. Soufflet, and H. Du, 2012: Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J. Geophys. Res., 117, D20111, doi:10.1029/2012JD018004.
Gutzler, D. S., D. M. Kann, and C. Thornbrugh, 2002: Modulation of ENSO-based long-lead outlooks of southwestern U.S. winter precipitation by the Pacific decadal oscillation. Wea. Forecasting, 17, 1163–1172, doi:10.1175/1520-0434(2002)017<1163:MOEBLL>2.0.CO;2.
Hamlet, A. F., and D. P. Lettenmaier, 1999: Columbia River streamflow forecasting based on ENSO and PDO climate signals. J. Water Res. Plann. Manage., 125, 333–341, doi:10.1061/(ASCE)0733-9496(1999)125:6(333).
Hanawa, K., and S. Sugimoto, 2004: ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys. Res. Lett., 31, L10303, doi:10.1029/2004GL019904.
Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28, 473–485, doi:10.1111/j.2153-3490.1976.tb00696.x.
Henley, B. J., J. Gergis, D. J. Karoly, S. B. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 3077–3090, doi:10.1007/s00382-015-2525-1.
Higgins, R. W., V. B. S. Silva, W. Shi, and J. Larson, 2007: Relationships between climate variability and fluctuations in daily precipitation over the United States. J. Climate, 20, 3561–3579, doi:10.1175/JCLI4196.1.
Hoerling, M. P., A. Kumar, and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14, 1277–1293, doi:10.1175/1520-0442(2001)014<1277:ROTNCR>2.0.CO;2.
Hsieh, C.-H., S. M. Glaser, A. J. Lucas, and G. Sugihara, 2005: Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435, 336–340, doi:10.1038/nature03553.
Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 6047–6065, doi:10.1175/2009JCLI2798.1.
Hunter, T., G. Tootle, and T. Piechota, 2006: Oceanic–atmospheric variability and western U.S. snowfall. Geophys. Res. Lett., 33, L13706, doi:10.1029/2006GL026600.
Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865–879, doi:10.1002/joc.1169.
Iwasaka, N., and J. M. Wallace, 1995: Large scale air sea interaction in the Northern Hemisphere from a view point of variations of surface heat flux by SVD analysis. J. Meteor. Soc. Japan, 73, 781–794.
Jones, P. D., and Coauthors, 2009: High-resolution paleoclimatology of the last millennium: A review of current status and future prospects. Holocene, 19, 3–49, doi:10.1177/0959683608098952.
Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 3155–3172, doi:10.1175/JCLI-D-11-00265.1.
Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856-1991. J. Geophys. Res., 103, 18 567–18 589, doi:10.1029/97JC01736.
Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333–1349, doi:10.1175/BAMS-D-13-00255.1.
Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 5644–5667, doi:10.1175/2010JCLI3346.1.
Keshner, M. S., 1982: 1/f noise. Proc. IEEE, 70, 212, doi:10.1109/PROC.1982.12282.
Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, doi:10.1029/2012GL051644.
Kim, H.-M., Y. G. Ham, and A. A. Scaife, 2014: Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction. J. Climate, 27, 5148–5162, doi:10.1175/JCLI-D-13-00519.1.
Kipfmueller, K. F., E. R. Larson, and S. St. George, 2012: Does proxy uncertainty affect the relations inferred between the Pacific decadal oscillation and wildfire activity in the western United States? Geophys. Res. Lett., 39, L04703, doi:10.1029/2011GL050645.
Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for the decadal variation of ENSO. Geophys. Res. Lett., 26, 1743–1747, doi:10.1029/1999GL900352.
Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 1140–1155, doi:10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.
Kumar, A., and H. Wang, 2014: On the potential of extratropical SST anomalies for improving climate predictions. Climate Dyn., 44, 2557–2569, doi:10.1007/s00382-014-2398-8.
Kumar, A., H. Wang, W. Wang, Y. Xue, and Z.-Z. Hu, 2013: Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J. Climate, 26, 1268–1285, doi:10.1175/JCLI-D-12-00057.1.
Kurtzman, D., and B. R. Scanlon, 2007: El Niño–Southern Oscillation and Pacific decadal oscillation impacts on precipitation in the southern and central United States: Evaluation of spatial distribution and predictions. Water Resour. Res., 43, W10427, doi:10.1029/2007WR005863.
Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.
Kwon, Y.-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20, 2416–2433, doi:10.1175/JCLI4103.1.
Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010a: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249–3281, doi:10.1175/2010JCLI3343.1.
Kwon, Y.-O., C. Deser, and C. Cassou, 2010b: Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Climate Dyn., 36, 2295–2312, doi:10.1007/s00382-010-0764-8.
Laepple, T., and P. Huybers, 2014: Global and regional variability in marine surface temperatures. Geophys. Res. Lett., 41, 2528–2534, doi:10.1002/2014GL059345.
Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.
Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634–637, doi:10.1126/science.266.5185.634.
Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 2407–2423, doi:10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2.
Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 21–33, doi:10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.
Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7, 1184–1207, doi:10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2.
Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 2036–2057, doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.
Lau, N.-C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical air–sea coupling. J. Climate, 14, 2846–2866, doi:10.1175/1520-0442(2001)014<2846:IOEOSV>2.0.CO;2.
Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Climate Dyn., 39, 1401–1412, doi:10.1007/s00382-011-1214-y.
Li, Y., F. Wang, and Y. Sun, 2012: Low-frequency spiciness variations in the tropical Pacific Ocean observed during 2003–2012. Geophys. Res. Lett., 39, L23601, doi:10.1029/2012GL053971.
Lienert, F., J. C. Fyfe, and W. J. Merryfield, 2011: Do climate models capture the tropical influences on North Pacific sea surface temperature variability? J. Climate, 24, 6203–6209, doi:10.1175/JCLI-D-11-00205.1.
Liu, Z., and M. A. Alexander, 2007: Atmospheric bridge, oceanic tunnel and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi:10.1029/2005RG000172.
MacDonald, G. M., and R. A. Case, 2005: Variations in the Pacific decadal oscillation over the past millennium. Geophys. Res. Lett., 32, L08703, doi:10.1029/2005GL022478.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
McCabe, G. J., and M. D. Dettinger, 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 1399–1410, doi:10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A.
McCabe, G. J., and M. D. Dettinger, 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 13–25, doi:10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2.
McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 4136–4141, doi:10.1073/pnas.0306738101.
McCabe, G. J., T. R. Ault, B. I. Cook, J. L. Betancourt, and M. D. Schwartz, 2012: Influences of the El Niño Southern Oscillation and the Pacific decadal oscillation on the timing of the North American spring. Int. J. Climatol., 32, 2301–2310, doi:10.1002/joc.3400.
McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603–608, doi:10.1038/415603a.
Meehl, G. A., and H. Teng, 2014: CMIP5 multi‐model hindcasts for the mid‐1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 1711–1716, doi:10.1002/2014GL059256.
Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780–792, doi:10.1175/2008JCLI2552.1.
Mehta, V. M., N. J. Rosenberg, and K. Mendoza, 2012: Simulated impacts of three decadal climate variability phenomena on dryland corn and wheat yields in the Missouri River basin. Agric. For. Meteor., 152, 109–124, doi:10.1016/j.agrformet.2011.09.011.
Mestas-Nuñez, A. M., and D. B. Enfield, 1999: Rotated global modes of non-ENSO sea surface temperature variability. J. Climate, 12, 2734–2746, doi:10.1175/1520-0442(1999)012<2734:RGMONE>2.0.CO;2.
Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Prog. Oceanogr., 47, 355–379, doi:10.1016/S0079-6611(00)00044-6.
Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994a: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 9, 287–302, doi:10.1007/BF00204744.
Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994b: The 1976-77 climate shift of the Pacific Ocean. Oceanography, 7, 21–26, doi:10.5670/oceanog.1994.11.
Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11, 3112–3127, doi:10.1175/1520-0442(1998)011<3112:AWIDCI>2.0.CO;2.
Milotti, E., 1995: Linear processes that produce 1/f or flicker noise. Phys. Rev. E, 51, 3087–3103, doi:10.1103/PhysRevE.51.3087.
Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686, doi:10.1029/97GL00504.
Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855–858, doi:10.1029/1999GL900119.
Miyasaka, T., and H. Nakamura, 2005: Summertime subtropical highs and tropospheric planetary waves in the Northern Hemisphere. J. Climate, 18, 5046–5065, doi:10.1175/JCLI3599.1.
Miyasaka, T., H. Nakamura, B. Taguchi, and M. Nonaka, 2014: Multidecadal modulations of the low-frequency climate variability in the wintertime North Pacific since 1950. Geophys. Res. Lett., 41, 2948–2955, doi:10.1002/2014GL059696.
Mo, K. C., 2010: Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J. Climate, 23, 3639–3656, doi:10.1175/2010JCLI3553.1.
Nakamura, H., and T. Yamagata, 1999: Recent decadal SST variability in the northwestern Pacific and associated atmospheric anomalies. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer, 49–72.
Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res., 108, 3078, doi:10.1029/1999JC000085.
Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 2215–2225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.
Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346.
Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 5952–5955, doi:10.1029/JC075i030p05952.
Namias, J., and R. M. Born, 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res., 79, 797–798, doi:10.1029/JC079i006p00797.
Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 2333–2356, doi:10.1175/JCLI4165.1.
Newman, M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 5260–5269, doi:10.1175/JCLI-D-12-00590.1.
Newman, M., G. P. Compo, and M. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 3853–3857, doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.
Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 2958–2977, doi:10.1175/2008JCLI2659.1.
Newman, M., S.-I. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.
Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19, 1970–1989, doi:10.1175/JCLI3793.1.
Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2008: Interannual-to-decadal variability in the Oyashio and its influence on temperature in the subarctic frontal zone: An eddy-resolving OGCM simulation. J. Climate, 21, 6283–6303, doi:10.1175/2008JCLI2294.1.
Nonaka, M., H. Sasaki, B. Taguchi, and H. Nakamura, 2012: Potential predictability of interannual variability in the Kuroshio Extension jet speed in an eddy-resolving OGCM. J. Climate, 25, 3645–3652, doi:10.1175/JCLI-D-11-00641.1.
Nonaka, M., Y. Sasai, H. Sasaki, B. Taguchi, and H. Nakamura, 2016: How potentially predictable are midlatitude ocean currents? Sci. Rep., 6, 20153, doi:10.1038/srep20153.
Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographic and seasonal variations. J. Climate, 11, 383–403, doi:10.1175/1520-0442(1998)011<0383:LCTOTO>2.0.CO;2.
Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11, 2482–2490, doi:10.1175/1520-0442(1998)011<2482:ROLCIS>2.0.CO;2.
Oakley, N. S., and K. T. Redmond, 2014: A climatology of 500-hPa closed lows in the northeastern Pacific Ocean, 1948–2011. J. Appl. Meteor. Climatol., 53, 1578–1592, doi:10.1175/JAMC-D-13-0223.1.
Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2014: Assessing the importance of prominent warm SST anomalies over the midlatitude North Pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn. J. Climate, 27, 3889–3903, doi:10.1175/JCLI-D-13-00140.1.
O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52–66, doi:10.1002/qj.2334.
Oshima, K., and Y. Tanimoto, 2009: An evaluation of reproducibility of the Pacific decadal oscillation in the CMIP3 simulations. J. Meteor. Soc. Japan, 87, 755–770, doi:10.2151/jmsj.87.755.
Overland, J. E., D. B. Percival, and H. O. Mofjeld, 2006: Regime shifts and red noise in the North Pacific. Deep-Sea Res. I, 53, 582–588, doi:10.1016/j.dsr.2005.12.011.
Park, J.-H., S. I. An, S.-W. Yeh, and N. Schneider, 2013: Quantitative assessment of the climate components driving the Pacific decadal oscillation in climate models. Theor. Appl. Climatol., 112, 431–445, doi:10.1007/s00704-012-0730-y.
Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.
Pederson, G. T., S. T. Gray, T. Ault, W. Marsh, D. B. Fagre, A. G. Bunn, C. A. Woodhouse, and L. J. Graumlich, 2011: Climatic controls on the snowmelt hydrology of the northern Rocky Mountains. J. Climate, 24, 1666–1687, doi:10.1175/2010JCLI3729.1.
Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 1999–2024, doi:10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.
Penland, C., and P. D. Sardeshmukh, 2012: Alternative interpretations of power-law distributions found in nature. Chaos, 22, 023119, doi:10.1063/1.4706504.
Percival, D. B., J. E. Overland, and H. O. Mofjeld, 2001: Interpretation of North Pacific variability as a short- and long-memory process. J. Climate, 14, 4545–4559, doi:10.1175/1520-0442(2001)014<4545:IONPVA>2.0.CO;2.
Phillips, A. S., C. Deser, and J. Fasullo, 2014: A new tool for evaluating modes of variability in climate models. Eos, Trans. Amer. Geophys. Union, 95, 453–455, doi:10.1002/2014EO490002.
Pierce, D. W., 2001: Distinguishing coupled ocean–atmosphere interactions from background noise in the North Pacific. Prog. Oceanogr., 49, 331–352, doi:10.1016/S0079-6611(01)00029-5.
Pierce, D. W., 2002: The role of sea surface temperatures in interactions between ENSO and the North Pacific Oscillation. J. Climate, 15, 1295–1308, doi:10.1175/1520-0442(2002)015<1295:TROSST>2.0.CO;2.
Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2013: Natural climate variability and teleconnections to precipitation over the Pacific–North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett., 40, 2296–2301, doi:10.1002/grl.50491.
Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324, doi:10.1007/s003820050284.
Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30, 1486–1502, doi:10.1175/1520-0485(2000)030<1486:IVOTKE>2.0.CO;2.
Qiu, B., 2002: The Kuroshio Extension system: Its large-scale variability and role in the midlatitude ocean–atmosphere interaction. J. Oceanogr., 58, 57–75, doi:10.1023/A:1015824717293.
Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 2465–2482, doi:10.1175/2459.1.
Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 2090–2103, doi:10.1175/JPO2807.1.
Qiu, B., and S. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 1098–1110, doi:10.1016/j.dsr2.2008.11.036.
Qiu, B., N. Schneider, and S. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 3602–3620, doi:10.1175/JCLI4190.1.
Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 1751–1764, doi:10.1175/JCLI-D-13-00318.1.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.
Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, doi:10.1175/2007JCLI1824.1.
Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulation of ENSO. J. Climate, 17, 3761–3774, doi:10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.
Rudnick, D. L., and R. E. Davis, 2003: Red noise and regime shifts. Deep-Sea Res. I, 50, 691–699, doi:10.1016/S0967-0637(03)00053-0.
Saravanan, R., and J. C. McWilliams, 1998: Advective ocean-atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11, 165–188, doi:10.1175/1520-0442(1998)011<0165:AOAIAA>2.0.CO;2.
Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13, 4268–4286, doi:10.1175/1520-0442(2000)013<4268:COPAWE>2.0.CO;2.
Sasaki, Y. N., and N. Schneider, 2011: Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr., 41, 979–993, doi:10.1175/2010JPO4550.1.
Sasaki, Y. N., N. Schneider, N. Maximenko, and K. Lebedev, 2010: Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys. Res. Lett., 37, L07708, doi:10.1029/2010GL042716.
Sasaki, Y. N., S. Minobe, and N. Schneider, 2013: Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-jet theory. J. Phys. Oceanogr., 43, 442–456, doi:10.1175/JPO-D-12-096.1.
Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14, 3997–4002, doi:10.1175/1520-0442(2001)014<3997:PWNPOC>2.0.CO;2.
Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 4355–4373, doi:10.1175/JCLI3527.1.
Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 1056–1070, doi:10.1175/1520-0485(1999)029<1056:SODNPT>2.0.CO;2.
Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586–605, doi:10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2.
Schwartz, R. E., A. Gershunov, S. F. Iacobellis, and D. R. Cayan, 2014: North American west coast summer low cloudiness: Broad scale variability associated with sea surface temperature. Geophys. Res. Lett., 41, 3307–3314, doi:10.1002/2014GL059825.
Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 4249–4265, doi:10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2.
Seager, R., A. R. Karspeck, M. A. Cane, Y. Kushnir, A. Giannini, A. Kaplan, B. Kerman, and J. Velez, 2004: Predicting Pacific decadal variability. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 105–120.
Shakun, J. D., and J. Shaman, 2009: Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett., 36, L19711, doi:10.1029/2009GL040313.
Sheffield, J., and Coauthors, 2013: North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. J. Climate, 26, 9247–9290, doi:10.1175/JCLI-D-12-00593.1.
Shen, C., W.-C. Wang, W. Gong, and Z. Hao, 2006: A Pacific decadal oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophys. Res. Lett., 33, L03702, doi:10.1029/2005GL024804.
Smirnov, D., M. Newman, and M. A. Alexander, 2014: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean. J. Climate, 27, 592–606, doi:10.1175/JCLI-D-13-00123.1.
Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi:10.1175/2007JCLI2100.1.
Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 1136–1155, doi:10.1175/JCLI3321.1.
St. George, S., 2014: An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev., 95, 132–150, doi:10.1016/j.quascirev.2014.04.029.
Strong, C., and G. Magnusdottir, 2009: The role of tropospheric Rossby wave breaking in the Pacific decadal oscillation. J. Climate, 22, 1819–1833, doi:10.1175/2008JCLI2593.1.
Sugimoto, S., and K. Hanawa, 2011: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio–Oyashio confluence region: Influences of warm eddies detached from the Kuroshio Extension. J. Climate, 24, 6551–6561, doi:10.1175/2011JCLI4023.1.
Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 2357–2377, doi:10.1175/JCLI4142.1.
Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate, 25, 111–139, doi:10.1175/JCLI-D-11-00046.1.
Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.
Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat fluxes. J. Geophys. Res., 108, 3304, doi:10.1029/2002JC001750.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, doi:10.1029/2000JD900719.
Timlin, M. S., M. A. Alexander, and C. Deser, 2002: On the reemergence of North Atlantic SST anomalies. J. Climate, 15, 2707–2712, doi:10.1175/1520-0442(2002)015<2707:OTRONA>2.0.CO;2.
Tingley, M. P., P. F. Craigmile, M. Haran, B. Li, E. Mannshardt, and B. Rajaratnam, 2012: Piecing together the past: Statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev., 35, 1–22, doi:10.1016/j.quascirev.2012.01.012.
Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303–319, doi:10.1007/BF00204745.
Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 1697–1701, doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.
Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 291–14 324, doi:10.1029/97JC01444.
Van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Climate Dyn., 38, 1263–1280, doi:10.1007/s00382-012-1313-4.
Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 2080–2092, doi:10.1175/JCLI3365.1.
Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal link between the mid-latitudes and tropics. Geophys. Res. Lett., 28, 3923–3926, doi:10.1029/2001GL013435.
Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.
Vimont, D. J., M. Alexander, and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518–534, doi:10.1175/2008JCLI2220.1.
Vose, R. S., and Coauthors, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 1232–1251, doi:10.1175/JAMC-D-13-0248.1.
Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Royal Meteor. Soc., 4 (36), 53–84.
Wang, H., A. Kumar, W. Wang, and Y. Xue, 2012: Seasonality of the Pacific decadal oscillation. J. Climate, 25, 25–38, doi:10.1175/2011JCLI4092.1.
Wang, S., J. Huang, Y. He, and Y. Guan, 2014: Combined effects of the Pacific decadal oscillation and El Niño–Southern Oscillation on global land dry–wet changes. Sci. Rep., 4, 6651, doi:10.1038/srep06651.
Wang, S.-Y., M. L’Heureux, and H.-H. Chia, 2012: ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys. Res. Lett., 39, L05702, doi:10.1029/2012GL050909.
Wen, C., Y. Xue, and A. Kumar, 2012: Seasonal prediction of North Pacific SSTs and PDO in the NCEP CFS hindcasts. J. Climate, 25, 5689–5710, doi:10.1175/JCLI-D-11-00556.1.
Wen, C., A. Kumar, and Y. Xue, 2014: Factors contributing to uncertainty in Pacific decadal oscillation index. Geophys. Res. Lett., 41, 7980–7986, doi:10.1002/2014GL061992.
Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 2667–2681, doi:10.1175/JCLI-D-13-00577.1.
Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 2373–2423, doi:10.1175/MWR-D-11-00121.1.
Wu, A., W. W. Hsieh, and A. Shabbar, 2005: The nonlinear patterns of North American winter temperature and precipitation associated with ENSO. J. Climate, 18, 1736–1752, doi:10.1175/JCLI3372.1.
Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16, 1101–1120, doi:10.1175/1520-0442(2003)16<1101:PDVTTP>2.0.CO;2.
Yeh, S.-W., and B. P. Kirtman, 2008: The low-frequency relationship of the tropical–North Pacific sea surface temperature teleconnections. J. Climate, 21, 3416–3432, doi:10.1175/2007JCLI1648.1.
Yeh, S.-W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663–677, doi:10.1175/JCLI-D-14-00137.1.
Yim, B. Y., M. Kwon, H. S. Min, and J.-S. Kug, 2014: Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Climate Dyn., 44, 1521–1540, doi:10.1007/s00382-014-2349-4.
Yu, B., and F. W. Zwiers, 2007: The impact of combined ENSO and PDO on the PNA climate: A 1,000-year climate modeling study. Climate Dyn., 29, 837–851, doi:10.1007/s00382-007-0267-4.
Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.
Zhang, D., and M. J. McPhaden, 2006: Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modell., 15, 250–273, doi:10.1016/j.ocemod.2005.12.005.
Zhang, L., and T. L. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 7678–7701, doi:10.1175/JCLI-D-14-00647.1.
Zhang, X., J. Wang, F. W. Zwiers, and P. Y. Groisman, 2010: The influence of large-scale climate variability on winter maximum daily precipitation over North America. J. Climate, 23, 2902–2915, doi:10.1175/2010JCLI3249.1.
Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.
Zhong, Y., Z. Liu, and R. Jacob, 2008: Origin of Pacific multidecadal variability in Community Climate System Model, version 3 (CCSM3): A combined statistical and dynamical assessment. J. Climate, 21, 114–133, doi:10.1175/2007JCLI1730.1.
The PDO over the historical record (1901–2014). (a) Regression of global monthly SST (shading; interval is 0.05°C) and DJF SLP (contours; interval is 1 hPa) anomalies onto the PDO time series from the HadISST dataset. Note that a positive PDO is associated with negative central North Pacific SSTA. (b) PDO index time series determined from the SST datasets, Centennial Observation-Based Estimates (COBE; Ishii et al. 2005), ERSST.v3b (Smith et al. 2008), HadISST (Rayner et al. 2003), and Kaplan (Kaplan et al. 1998). Positive (negative) values are drawn in red (blue). The thick black line in each panel shows the smoothed (6-yr lowpass; Zhang et al. 1997) time series. The last series in (b) shows the departure of each time series from the mean of all four time series. (c) Seasonal cycle of (3-month running mean) PDO index autocorrelation. Contour (shading) interval is 0.2 (0.1). Only values that are 95% significant are shaded. The month ordinate indicates the time of the PDO base month, and the lag indicates how far ahead or behind the PDO is; for example, the value plotted at (5, MAY) represents the correlation between the May value of the PDO and the subsequent October value of the PDO.
Taylor diagram (Taylor 2001) comparing the reference PDO (HadISST) pattern (Fig. 1a, black circle) with variations due to sampling, observational dataset, and geographical domain; and to PDOs determined from CGCMs run with historical radiative forcing. In this diagram, the distance of a point from the origin is the pattern standard deviation (°C), and the distance from the reference point [at (0.26, 0)] is the root-mean-square error (RMSE) between the pattern and the reference pattern, indicated by the dashed semicircles spaced at an interval of 0.1°C. The pattern correlation, decreasing in a counterclockwise azimuthal direction, is mathematically related to these two quantities. The analysis is taken only over the North Pacific PDO domain (20°–70°N). Black dots show the PDO estimates based on the 50-yr Monte Carlo subsamples; triangles show PDO results determined from the ERSST.v3b (blue), COBE (green), and Kaplan (magenta) observed datasets; orange symbols show the SSTA structure (within the North Pacific PDO region) associated with the leading SSTA EOF, where the southern border of the Pacific domain is instead 0° (square), 20°S (diamond), and 70°S (circle). Also shown are the CMIP3 (cyan squares), CMIP5 (red hexagons), and CESM-LE (yellow hexagons) historical simulation PDOs. EOF spatial patterns were interpolated onto the 2° × 2° grid used for the reference pattern. As a result of differences in landmasks, metrics for the Taylor diagram were calculated over ocean points that were in common between each model and the HadISST data.
Illustration of how both local and remote atmospheric forcing can drive PDO variability. (a) One-season lead correlation between November–January (NDJ) NPI and global SSTAs during FMA. (b) Seasonal cycle of cross correlation between the NPI and the PDO index (both filtered with 3-month running mean). PDO leads NPI for positive lags; NPI leads PDO for negative lags. In (a) and (b), the NPI index sign has been flipped so that positive refers to a deepening of the Aleutian low, which also will correspond to positive PDO. (c) One-season lag correlation between the NDJ value of the ENSO index (the leading PC of the tropical Pacific SSTA) and global SSTAs during FMA. (d) Seasonal cycle of cross correlation between the ENSO and PDO indices (both filtered with 3-month running mean). PDO leads ENSO for positive lags; ENSO leads PDO for negative lags. All panels are determined from 1901–2014 data; shading interval is 0.1. For (b) and (d), only values that are 95% significant are shaded, and the contour line interval is 0.2. The month ordinate indicates the time of the PDO index base month, and the lag indicates how far ahead or behind the second variable is; for example, the value plotted at (5, MAY) represents the correlation between the May value of the PDO and the subsequent October value of the other variable.
Illustration of the reemergence of oceanic thermal anomalies. Correlation of the February–April (FMA) value of the PDO index (as in Fig. 1b, but determined from 3-month running means) with ECMWF ORAS4 ocean temperatures (Balmaseda et al. 2013) for the subsequent 3 yr, area averaged in (a) the Gulf of Alaska, (b) the central Pacific, and (c) the western Pacific, for the years 1958–2014, with the 57-yr linear trend removed from each area average. The gray line shows the climatological mean mixed layer depth as a function of time of year at each location, so it repeats over the 3-yr period.
Illustration of the slow ocean (Rossby wave) dynamics process driving PDO variability. (a) Time series of the SSTA in the mixed-water region (MWR, solid) and the PDO index (with sign inverted, dashed). The temperature index is based on the optimal interpolation, blended, ¼° SST analysis of Reynolds et al. (2007). The MWR extends from the coast of Japan to 150°E, and between 36° and 42°N. Both the MWR and PDO indices have been normalized by their respective standard deviations. The correlation between MWR and PDO indices is −0.49. (b) Satellite-observed sea surface height anomalies (cm), averaged between 33° and 35°N. The dotted line marks a westward phase speed of 3.7 cm s−1 (Qiu and Chen 2010). Sea surface temperature and sea surface height anomalies have been detrended and smoothed with a 2-yr running mean, with weights varying linearly as a function of lag.
Reconstructing the PDO as the sum of three different dynamical processes. Time series for the contributions to the PDO from the (a) second (North Pacific), (c) third (central Pacific ENSO), and (e) fourth [eastern Pacific ENSO; showing the most energetic phase of this complex eigenmode (essentially, cosine phase), with the least energetic phase (sine phase) not shown] eigenmodes and (b),(d),(f) the corresponding maps of the LIM described in the text. Note that unlike EOFs, these eigenmodes are nonorthogonal. Contour intervals are the same in all three eigenmode maps; all eigenmodes are normalized to have unit amplitude. For all time series, positive (negative) values are drawn in red (blue). The LIM is determined in a reduced EOF space (with 25 degrees of freedom) that retains about 85% of the SST variance in the tropics and North Pacific domains. (g) PDO reconstruction is the sum of the time series shown in (a),(c),(e). (h) PDO index time series (as in Fig. 1c, but with a 3-month running mean smoothing applied). In the time series panels, thick black lines represent the application of the same 6-yr low-pass smoother as in Fig. 1b, and vertical green lines indicate times of PDO regime shifts.
Epoch difference maps, showing SST differences between two adjacent 20-yr means centered on (a) 1968/69 and (b) 1976/77. Contour interval is 0.1°C. The adjacent 20-yr periods used for each epoch calculation are indicated by the corresponding color bars in Fig. 6h.
The PDO over the historical record as simulated by coupled CGCMs. (a),(b) As in Fig. 1a, but showing two selected members of the historical CMIP5 ensemble that are (a) closest and (b) farthest from the reference pattern in Fig. 2. (c),(d) As in (a),(b), but showing two selected members of the CESM-LE that are (c) closest and (d) farthest from the reference pattern in Fig. 2. (e) PDO time series from all ensemble members; all time series are smoothed with the Zhang et al. (1997) filter (used in Fig. 1c). Thin gray lines represent each ensemble member, the thin black solid (dashed) line in the CMIP5 panel represents model A (B), and the thick black line is the ensemble mean for each set of models.
Temporal relationships relevant to the PDO for the (top) CMIP3, (middle) CMIP5, and (bottom) CESM-LE (LENS) ensembles. Shown are (a),(d),(g) the autocorrelation of the monthly PDO index; (b),(e),(h) the lagged seasonal correlation between the seasonal PDO index and the DJF averaged Niño-3.4 index; and (c),(f),(i) the lagged seasonal correlation between the seasonal PDO index and the DJF-averaged PNA index. In all panels the thin gray lines indicate model correlations, the thick solid black line indicates correlations for indices from the HadISST data, and the thick dashed line indicates correlations with indices from the ERSST.v3b data. In (c),(f),(i) the observed DJF PNA time series is obtained from the twentieth-century reanalysis. Observed correlations are taken over the time period 1901–2009, CMIP3 over 1900–99, CMIP5 over 1901–2004, and LENS over 1920–2005. For seasonal correlations, positive lags indicate that the Niño-3.4 or PNA index leads the seasonal PDO index, and the label along the abscissa indicates the season for which the PDO is defined.
Parameters for an AR1 model of the PDO time series [(4)] for CMIP5 models (blue bars) and observations (red bars). The AR1 model is determined from the PDO index and two leading tropical PCs, ENSO1 and ENSO2, calculated as discussed in the text but for the period 1900–2000, and then averaged from July to June. (a) Unforced lag-1 autocorrelation, that is, r in (4). (b) Forcing coefficient for ENSO1, that is, a in (4). (c) Forcing coefficient for ENSO2, that is, b in (4). (d) Correlation ρ between each model’s PDO index time series and the corresponding estimated PDO time series determined from the AR1 model.
Comparison of observed, paleoclimate, and CMIP5 PDO spectra: (a) CMIP5 historical simulations (190 runs total) and forced last millennium (past 1000 yr) simulations (6 runs), (b) unforced control simulations (48 runs total), and (c) paleoclimate (tree ring and other proxy based) reconstructions of the PDO. In (a)–(c), the thick black line represents the HadISST PDO spectrum, and the three thin blacks lines show the other three observational PDO spectra. In each case, only winter [November–March (NDJFM)] averages are used for consistency between data types. All PDO reconstruction indices were normalized to unit variance over 1901–2000; all other indices were normalized to the unit variance overall, not just the reference period. The gray shading and black lines show the upper and lower 95% confidence limits of the PDO power spectrum derived from 140 realizations of a LIM simulation [see (3)] each lasting 1750 yr. (d) Time series of each PDO reconstruction and the relative similarity of the reconstructions through time. The colored lines show the individual reconstructions themselves (left axis), while the gray shading shows the relative similarity (right axis), measured by the shared variance of the different indices through time, or the fraction of the total variance shared by all reconstructions in the correlation matrix of all time series over a moving 40-yr window. The ratio is computed by dividing the leading eigenvalue of the reconstruction correlation matrix by the total number of reconstructions available through time. (e) As in (d), but smoothed with a 21-yr running Gaussian filter.
Cold season relationship between climate indices discussed in this paper and U.S. precipitation and temperature anomalies determined from U.S. climate division data (Vose et al. 2014), for the years 1901–2014. NDJFM U.S. precipitation anomalies correlated with (a) the PDO index, (b) the ENSO index, and (c) the NPI. NDJFM U.S. temperature anomalies correlated with (d) the PDO index, (e) the ENSO index, and (f) the NPI.