Allen, J. R. M., A. J. Long, C. J. Ottley, D. G. Pearson, and B. Huntley, 2007: Holocene climate variability in northernmost Europe. Quat. Sci. Rev., 26, 1432–1453, https://doi.org/10.1016/j.quascirev.2007.02.009.
Alley, R. B., 2000: The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev., 19, 213–226, https://doi.org/10.1016/S0277-3791(99)00062-1.
Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proc. Natl. Acad. Sci. USA, 104, 3713–3718, https://doi.org/10.1073/pnas.0605064103.
Anchukaitis, K. J., and Coauthors, 2017: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat. Sci. Rev., 163, 1–22, https://doi.org/10.1016/j.quascirev.2017.02.020.
Andres, H. J., and W. R. Peltier, 2016: Regional influences of natural external forcings on the transition from the Medieval Climate Anomaly to the Little Ice Age. J. Climate, 29, 5779–5800, https://doi.org/10.1175/JCLI-D-15-0599.1.
Atwood, A. R., E. Wu, D. M. W. Frierson, and D. S. Battisti, 2016: Quantifying climate forcings and feedbacks over the last millennium in the CMIP5–PMIP3 models. J. Climate, 29, 1161–1178, https://doi.org/10.1175/JCLI-D-15-0063.1.
Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, S. S. George, B. Otto-Bliesner, C. A. Woodhouse, and C. Deser, 2013: The continuum of hydroclimate variability in western North America during the last millennium. J. Climate, 26, 5863–5878, https://doi.org/10.1175/JCLI-D-11-00732.1.
Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, https://doi.org/10.1007/s00376-012-2113-9.
Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367, https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.
Berger, A. L., and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q.
Bergthórsson, P., 1969: An estimate of drift ice and temperature in Iceland in 1000 years. Jökull, 19, 94–101.
Bernabo, J. C., 1981: Quantitative estimates of temperature changes over the last 2700 years in Michigan based on pollen data. Quat. Res., 15, 143–159, https://doi.org/10.1016/0033-5894(81)90101-0.
Berner, K. S., N. Koç, F. Godtliebsen, and D. Divine, 2011: Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing. Paleoceanography, 26, PA2220, https://doi.org/10.1029/2010PA002002.
Bohleber, P., T. Erhardt, N. Spaulding, H. Hoffmann, H. Fischer, and P. Mayewski, 2018: Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Climate Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018.
Boldt, B. R., D. S. Kaufman, N. P. McKay, and J. P. Briner, 2015: Holocene summer temperature reconstruction from sedimentary chlorophyll content, with treatment of age uncertainties, Kurupa Lake, Arctic Alaska. Holocene, 25, 641–650, https://doi.org/10.1177/0959683614565929.
Böll, A., and Coauthors, 2014: Late Holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability. Paleoceanography, 29, 778–794, https://doi.org/10.1002/2013PA002579.
Bothe, O., J. H. Jungclaus, and D. Zanchettin, 2013a: Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Climate Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013.
Bothe, O., J. H. Jungclaus, D. Zanchettin, and E. Zorita, 2013b: Climate of the last millennium: Ensemble consistency of simulations and reconstructions. Climate Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013.
Bouillon, S., M. A. Morales Maqueda, V. Legat, and T. Fichefet, 2009: An elastic–viscous–plastic sea ice model formulated on Arakawa B and C grids. Ocean Modell., 27, 174–184, https://doi.org/10.1016/j.ocemod.2009.01.004.
Box, G. E. P., J. S. Hunter, and W. G. Hunter, 2005: Statistics for Experimenters. 2nd ed. Wiley, 633 pp.
Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417–424, https://doi.org/10.1038/nclimate1456.
Briffa, K. R., T. M. Melvin, T. J. Osborn, R. M. Hantemirov, A. V. Kirdyanov, V. S. Mazepa, S. G. Shiyatov, and J. Esper, 2013: Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia. Quat. Sci. Rev., 72, 83–107, https://doi.org/10.1016/j.quascirev.2013.04.008.
Büntgen, U., and Coauthors, 2011: 2500 years of European climate variability and human susceptibility. Science, 331, 578–582, https://doi.org/10.1126/science.1197175.
Büntgen, U., and Coauthors, 2016: Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci., 9, 231–236, https://doi.org/10.1038/ngeo2652.
Büntgen, U., D. C. Frank, D. Nievergelt, and J. Esper, 2006: Summer temperature variations in the European Alps, A.D. 755–2004. J. Climate, 19, 5606–5623, https://doi.org/10.1175/JCLI3917.1.
Bürger, G., I. Fast, and U. Cubasch, 2006: Climate reconstruction by regression—32 variations on a theme. Tellus, 58A, 227–235, https://doi.org/10.1111/j.1600-0870.2006.00164.x.
Chen, F., Y. Zhang, X. Shao, M. Q. Li, and Z. Y. Yin, 2016: A 2000-year temperature reconstruction in the Animaqin Mountains of the Tibet Plateau, China. Holocene, 26, 1904–1913, https://doi.org/10.1177/0959683616646187.
Cheung, A. H., M. E. Mann, B. A. Steinman, L. M. Frankcombe, M. H. England, and S. K. Miller, 2017: Comparison of low frequency internal climate variability in CMIP5 models and observations. J. Climate, 30, 4763–4776, https://doi.org/10.1175/JCLI-D-16-0712.1.
Chiodo, G., and L. M. Polvani, 2016: Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback. J. Climate, 29, 4651–4663, https://doi.org/10.1175/JCLI-D-15-0721.1.
Christiansen, B., 2011: Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided? J. Climate, 24, 674–692, https://doi.org/10.1175/2010JCLI3646.1.
Christiansen, B., and F. C. Ljungqvist, 2017: Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys., 55, 40–96, https://doi.org/10.1002/2016RG000521.
Christiansen, B., T. Schmith, and P. Thejll, 2009: A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness. J. Climate, 22, 951–976, https://doi.org/10.1175/2008JCLI2301.1.
Chu, G., and Coauthors, 2012: Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from Northeastern China. Holocene, 22, 785–792, https://doi.org/10.1177/0959683611430413.
Clegg, B. F., G. H. Clarke, M. L. Chipman, M. Chou, I. R. Walker, W. Tinner, and F. S. Hu, 2010: Six millennia of summer temperature variation based on midge analysis of lake sediments from Alaska. Quat. Sci. Rev., 29, 3308–3316, https://doi.org/10.1016/j.quascirev.2010.08.001.
Clegg, B. F., R. Kelly, G. H. Clarke, I. R. Walker, and F. S. Hu, 2011: Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proc. Natl. Acad. Sci. USA, 108, 19 299–19 304, https://doi.org/10.1073/pnas.1110913108.
Collins, W. J., and Coauthors, 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017.
Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of a HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61–81, https://doi.org/10.1007/s003820000094.
Cook, E. R., B. M. Buckley, R. D. D’Arrigo, and M. J. Peterson, 2000: Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Climate Dyn., 16, 79–91, https://doi.org/10.1007/s003820050006.
Cook, E. R., J. G. Palmer, and R. D. D’Arrigo, 2002: Evidence for a ‘Medieval Warm Period’ in a 1,100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys. Res. Lett., 29, 1667, https://doi.org/10.1029/2001GL014580.
Cook, T. L., R. S. Bradley, J. S. Stoner, and P. Francus, 2009: Five thousand years of sediment transfer in a high Arctic watershed recorded in annually laminated sediments from Lower Murray Lake, Ellesmere Island, Nunavut, Canada. J. Paleolimnol., 41, 77–94, https://doi.org/10.1007/s10933-008-9252-0.
Cronin, T. M., G. S. Dwyer, T. Kamiya, S. Schwede, and D. A. Willard, 2003: Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay. Global Planet. Change, 36, 17–29, https://doi.org/10.1016/S0921-8181(02)00161-3.
Crowley, T., and M. B. Unterman, 2013: Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013.
D’Andrea, W. J., Y. Huang, S. C. Fritz, and N. J. Anderson, 2011: Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl. Acad. Sci. USA, 108, 9765–9769, https://doi.org/10.1073/pnas.1101708108.
D’Andrea, W. J., D. Vaillencourt, N. L. Balascio, A. Werner, S. Roof, M. Retelle, and R. S. Bradley, 2012: Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology, 40, 1007–1010, https://doi.org/10.1130/G33365.1.
Davey, M., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403–420, https://doi.org/10.1007/s00382-001-0188-6.
Davi, N. K., and Coauthors, 2015: A long-term context (931–2005 C.E.) for rapid warming over Central Asia. Quat. Sci. Rev., 121, 89–97, https://doi.org/10.1016/j.quascirev.2015.05.020.
Davis, B. A. S., S. Brewer, A. C. Stevenson, and J. Guiot, 2003: The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev., 22, 1701–1716, https://doi.org/10.1016/S0277-3791(03)00173-2.
de Jong, R., L. von Gunten, A. Maldonado, and M. Grosjean, 2013: Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high-elevation Laguna Chepical, Chile (32° S). Climate Past, 9, 1921–1932, https://doi.org/10.5194/cp-9-1921-2013.
Dee, S. G., L. A. Parsons, G. R. Loope, J. T. Overpeck, T. R. Ault, and J. Emile-Geay, 2017: Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability. Earth Planet. Sci. Lett., 476, 34–46, https://doi.org/10.1016/j.epsl.2017.07.036.
DelSole, T., 2006: Low-frequency variations of surface temperature in observations and simulations. J. Climate, 19, 4487–4507, https://doi.org/10.1175/JCLI3879.1.
Divine, D., and Coauthors, 2011: Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice core data. Polar Res., 30, 7379, https://doi.org/10.3402/polar.v30i0.7379.
Domack, E., A. Leventer, R. Dunbar, F. Taylor, S. Brachfield, and C. Sjunneskog, 2001: Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene palaeoenvironmental reference for the circum-Antarctic. Holocene, 11, 1–9, https://doi.org/10.1191/095968301673881493.
Doose-Rolinski, H., U. Rogalla, G. Scheeder, A. Lücke, and U. von Rad, 2001: High resolution temperature and evaporation changes during the late Holocene in the northeastern Arabian Sea. Paleoceanography, 16, 358–367, https://doi.org/10.1029/2000PA000511.
Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1.
Eby, M., and Coauthors, 2013: Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Climate Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013.
Edwards, T. W. D., S. J. Birks, B. H. Luckman, and G. M. MacDonald, 2008: Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat. Res., 70, 188–197, https://doi.org/10.1016/j.yqres.2008.04.013.
Elbert, J., and Coauthors, 2013: Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia, Chile (45°3′S). Palaeogeogr. Palaeoclimatol. Palaeoecol., 369, 482–492, https://doi.org/10.1016/j.palaeo.2012.11.013.
Esper, J., F. H. Schweingruber, and M. Winiger, 2002: 1300 years of climatic history for Western Central Asia inferred from tree-rings. Holocene, 12, 267–277, https://doi.org/10.1191/0959683602hl543rp.
Esper, J., and Coauthors, 2012: Orbital forcing of tree-ring data. Nat. Climate Change, 2, 862–866, https://doi.org/10.1038/nclimate1589.
Esper, J., and Coauthors, 2016: Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev., 145, 134–151, https://doi.org/10.1016/j.quascirev.2016.05.009.
Fernández-Donado, L., and Coauthors, 2013: Temperature response to external forcing in simulations and reconstructions of the last millennium. Climate Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013.
Fernández-Donado, L., 2016: Forced and internal variability in temperature simulations and reconstructions of the Common Era. Ph.D. dissertation, Universidad Complutense de Madrid, 167 pp., https://eprints.ucm.es/35730/.
Fieller, E. C., 1954: Some problems in interval estimation. J. Roy. Stat. Soc., 16B, 175–185, https://doi.org/10.1111/j.2517-6161.1954.tb00159.x.
Filippi, M. L., P. Lambert, J. Hunziker, B. Kubler, and S. Bernasconi, 1999: Climatic and anthropogenic influence on the stable isotope record from bulk carbonates and ostracodes in Lake Neuchâtel, Switzerland, during the last two millennia. J. Paleolimnol., 21, 19–34, https://doi.org/10.1023/A:1008005622256.
Flückiger, J., and Coauthors, 1999: Variations in atmospheric N2O concentration during abrupt climatic changes. Science, 285, 227–230, https://doi.org/10.1126/science.285.5425.227.
Flückiger, J., and Coauthors, 2002: High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem. Cycles, 16, https://doi.org/10.1029/2001GB001417.
Franke, J., S. Brönnimann, J. Bhend, and Y. Brugnara, 2017: A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations. Sci. Data, 4, 170076, https://doi.org/10.1038/sdata.2017.76.
Friedman, M., 1937: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Stat. Assoc., 32, 675–701, https://doi.org/10.1080/01621459.1937.10503522.
Friedman, M., 1939: A correction: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Stat. Assoc., 34, 109, https://doi.org/10.2307/2279169.
Gajewski, K., 1988: Late Holocene climate changes in eastern North America estimated from pollen data. Quat. Res., 29, 255–262, https://doi.org/10.1016/0033-5894(88)90034-8.
Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the last 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239.
Ge, Q., J. Zheng, X. Fang, Z. Man, X. Zhang, P. Zhang, and W.-C. Wang, 2003: Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene, 13, 933–940, https://doi.org/10.1191/0959683603hl680rr.
Gennaretti, F., D. Arseneault, A. Nicault, L. Perreault, and Y. Bégin, 2014: Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc. Natl. Acad. Sci. USA, 111, 10 077–10 082, https://doi.org/10.1073/pnas.1324220111.
Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1.
Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.20038.
Gómez-Navarro, J. J., and Coauthors, 2015: A regional climate palaeosimulation for Europe in the period 1500–1990—Part 2: Shortcomings and strengths of models and reconstructions. Climate Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015.
Goñi, M. A., and Coauthors, 2003: Biogenic fluxes in the Cariaco Basin: A combined study of sinking particulates and underlying sediments. Deep-Sea Res., 50, 781–807, https://doi.org/10.1016/S0967-0637(03)00060-8.
González-Rouco, J. F., H. Beltrami, E. Zorita, and M. B. Stevens, 2009: Borehole climatology: A discussion based on contributions from climate modelling. Climate Past, 5, 97–127, https://doi.org/10.5194/cp-5-97-2009.
Goosse, H., and Coauthors, 2005: Modelling the climate of the last millennium: What causes the differences between simulations. Geophys. Res. Lett., 32, L06710, https://doi.org/10.1029/2005GL022368.
Goosse, H., 2017: Reconstructed and simulated temperature asymmetry between continents in both hemispheres over the last centuries. Climate Dyn., 48, 1483–1501, https://doi.org/10.1007/s00382-016-3154-z.
Goosse, H., H. Renssen, A. Timmermann, R. S. Bradley, and M. E. Mann, 2006: Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Climate Dyn., 27, 165–184, https://doi.org/10.1007/s00382-006-0128-6.
Goosse, H., E. Crespin, S. Dubinkina, M.-F. Loutre, M. E. Mann, H. Renssen, Y. Sallaz-Damaz, and D. Shindell, 2012: The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly.” Climate Dyn., 39, 2847–2866, https://doi.org/10.1007/s00382-012-1297-0.
Graumlich, L. J., 1993: A 1000-year record of temperature and precipitation in the Sierra Nevada. Quat. Res., 39, 249–255, https://doi.org/10.1006/qres.1993.1029.
Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.
Hakim, G. J., and Coauthors, 2016: The last millennium climate reanalysis project: Framework and first results. J. Geophys. Res. Atmos., 121, 6745–6764, https://doi.org/10.1002/2016JD024751.
Hansen, J., and M. Sato, 2004: Greenhouse gas growth rates. Proc. Natl. Acad. Sci. USA, 101, 16 109–16 114, https://doi.org/10.1073/pnas.0406982101.
Hargreaves, J. C., J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi, 2013: Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene. Climate Past, 9, 811–823, https://doi.org/10.5194/cp-9-811-2013.
Harrison, S., and Coauthors, 2014: Climate model benchmarking with glacial and mid-Holocene climates. Climate Dyn., 43, 671–688, https://doi.org/10.1007/s00382-013-1922-6.
Harrison, S., P. J. Bartlein, and I. C. Prentice, 2016: What have we learnt from palaeoclimate simulations? J. Quat. Sci., 31, 363–385, https://doi.org/10.1002/jqs.2842.
Hartl-Meier, C. T. M., and Coauthors, 2017: Millennial-scale temperature coherence in proxy reconstructions and climate models. Geophys. Res. Lett., 44, 9458–9469, https://doi.org/10.1002/2017GL073239.
Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1107, https://doi.org/10.1175/2009BAMS2607.1.
Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 1357–1363, https://doi.org/10.1175/2010BAMS2877.1.
Hazeleger, W., and Coauthors, 2012: EC-Earth V2.2: Description and validation of a new seamless earth system prediction model. Climate Dyn., 39, 2611–2629, https://doi.org/10.1007/s00382-011-1228-5.
He, Y.-X., and Coauthors, 2013: Solar influenced late Holocene temperature changes on the northern Tibetan Plateau. Chin. Sci. Bull., 58, 1053–1059, https://doi.org/10.1007/s11434-012-5619-8.
Helama, S., M. M. Fauria, K. Mielikäinen, M. Timonen, and M. Eronen, 2010: Sub-Milankovitch solar forcing of past climates: Mid and late Holocene perspectives. Geol. Soc. Amer. Bull., 122, 1981–1988, https://doi.org/10.1130/B30088.1.
Helama, S., M. Vartiainen, J. Holopainen, H. M. Mäkelä, T. Kolström, and J. Meriläinen, 2014: A palaeotemperature record for the Finnish Lakeland based on microdensitometric variations in tree rings. Geochronometria, 41, 265–277, https://doi.org/10.2478/s13386-013-0163-0.
Herbert, C. T., and J. S. Compton, 2007: Geochronology of Holocene sediments on the western margin of South Africa. S. Afr. J. Geol., 110, 327–338, https://doi.org/10.2113/gssajg.110.2-3.327.
Hind, A., and A. Moberg, 2013: Past millennial solar forcing magnitude. Climate Dyn., 41, 2527–2537, https://doi.org/10.1007/s00382-012-1526-6.
Hind, A., Q. Zhang, and G. Brattström, 2016: Problems encountered when defining Arctic amplification as a ratio. Sci. Rep., 6, 30 469, https://doi.org/10.1038/srep30469.
Holmgren K., and et al, 1999 :A 3000-year high-resolution record of palaeoclimate for north-eastern South Africa. Holocene, 9, 295–309, https://doi.org/10.1191/095968399672625464.
Holmgren, K., P. D. Tyson, A. Moberg, and O. Svanered, 2001: A preliminary 3000-year regional temperature reconstruction for South Africa. S. Afr. J. Sci., 97, 49–51.
Hu, F. S., E. Ito, T. A. Brown, B. B. Curry, and D. R. Engstrom, 2001: Pronounced climatic variations in Alaska during the last two millennia. Proc. Natl. Acad. Sci. USA, 98, 10 552–10 556, https://doi.org/10.1073/pnas.181333798.
Huang, S. P., H. N. Pollack, and P. Y. Shen, 2008: A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophys. Res. Lett., 35, L13703, https://doi.org/10.1029/2008GL034187.
Hurtt, G. C., and Coauthors, 2006: The underpinnings of land-use history: Three centuries of global gridded landuse transitions, wood harvest activity, and resulting secondary lands. Global Change Biol., 12, 1208–1229, https://doi.org/10.1111/j.1365-2486.2006.01150.x.
Ineson, S., and Coauthors, 2015: Regional climate impacts of a possible future grand solar minimum. Nat. Commun., 6, 7535, https://doi.org/10.1038/ncomms8535.
Isono, D., M. Yamamoto, T. Irino, T. Oba, M. Murayama, T. Nakamura, and H. Kawahata, 2009: The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology, 37, 591–594, https://doi.org/10.1130/G25667A.1.
Jiang, J., M. Eiriksson, K. L. Schultz, K.-L. Knudsen, and M.-S. Seidenkrantz, 2005: Evidence for solar forcing of sea surface temperature on the North Icelandic Shelf during the late Holocene. Geology, 33, 73–76, https://doi.org/10.1130/G21130.1.
Johns, T. C., and Coauthors, 2003: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dyn., 20, 583–612, https://doi.org/10.1007/s00382-002-0296-y.
Jones, P., and Coauthors, 2009: High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene, 19, 3–49, https://doi.org/10.1177/0959683608098952.
Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796, https://doi.org/10.1126/science.1141038.
Jungclaus, J. H., and Coauthors, 2010: Climate and carbon-cycle variability over the last millennium. Climate Past, 6, 723–737, https://doi.org/10.5194/cp-6-723-2010.
Jungclaus, J. H., and Coauthors, 2017: The PMIP4 contribution to CMIP6 – Part 3: the last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model Dev., 10, https://doi.org/10.5194/gmd-10-4005-2017.
Kalugin, I. A., A. V. Daryin, and V. V. Babich, 2009: Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe Lake sediments. Dokl. Earth Sci., 426, 681–684, https://doi.org/10.1134/S1028334X09040382.
Kaplan, J. O., K. M. Krumhardt, E. C. Ellis, W. F. Ruddiman, C. Lemmen, and K. Klein Goldewijk, 2011: Holocene carbon emissions as a result of anthropogenic land cover change. Holocene, 21, 775–791, https://doi.org/10.1177/0959683610386983.
Kawahata, H., and Coauthors, 2017: Climatic change and its influence on human society in western Japan during the Holocene. Quat. Int., 440, 102–117, https://doi.org/10.1016/j.quaint.2016.04.013.
Keigwin, L. D., 1996: The Little Ice Age and Medieval Warm Period in the Sargasso Sea. Science, 274, 1504–1508, https://doi.org/10.1126/science.274.5292.1504.
Kellerhals, T., S. Brütsch, M. Sigl, S. Knüsel, H. W. Gäggeler, and M. Schwikowski, 2010: Ammonium concentration in ice cores: A new proxy for regional temperature reconstruction? J. Geophys. Res., 115, D16123, https://doi.org/10.1029/2009JD012603.
Kim, J. H., S. Schouten, E. C. Hopmans, B. Donner, and J. S. Sinninghe Damsté, 2008: Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim. Cosmochim. Acta, 72, 1154–1173, https://doi.org/10.1016/j.gca.2007.12.010.
Kitagawa, H., and E. Matsumoto, 1995: Climatic implications of δ13C variations in a Japanese cedar (Cryptomeria japonica) during the last two millennia. Geophys. Res. Lett., 22, 2155–2158, https://doi.org/10.1029/95GL02066.
Klein, F., and H. Goosse, 2018: Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last centuries using data assimilation. Climate Dyn., 50, 3909–3929, https://doi.org/10.1007/s00382-017-3853-0.
Kobashi, T., K. Kawamura, J. P. Severinghaus, J.-M. Barnola, T. Nakaegawa, B. M. Vinther, S. J. Johnsen, and J. E. Box, 2011: High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophys. Res. Lett., 38, L21501, https://doi.org/10.1029/2011GL049444.
Kong, D., G. Wei, M. T. Chen, S. Peng, and Z. Liu, 2017: Northern South China Sea SST changes over the last two millennia and possible linkage with solar irradiance. Quat. Int., 459, 29–34, https://doi.org/10.1016/j.quaint.2017.10.001.
Krivova, N. A., L. E. A. Vieira, and S. K. Solanki, 2010: Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res., 115, A12112, https://doi.org/10.1029/2010JA015431.
Krivova, N. A., S. K. Solanki, and Y. C. Unruh, 2011: Towards a long-term record of solar total and spectral irradiance. J. Atmos. Sol.-Terr. Phys., 73, 223–234, https://doi.org/10.1016/j.jastp.2009.11.013.
Kuhnert, H., and S. Mulitza, 2011: Multidecadal variability and late medieval cooling of near-coastal sea surface temperatures in the eastern tropical North Atlantic. Paleoceanography, 26, PA4224, https://doi.org/10.1029/2011PA002130.
Laepple, T., and P. H. Huybers, 2014a: Global and regional variability in marine surface temperatures. Geophys. Res. Lett., 41, 2528–2534, https://doi.org/10.1002/2014GL059345.
Laepple, T., and P. H. Huybers, 2014b: Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 16 682–16 687, https://doi.org/10.1073/pnas.1412077111.
Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010.
Lamb, H. H., 1965: The early Medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1, 13–37, https://doi.org/10.1016/0031-0182(65)90004-0.
Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. J. Lawrence, and H. Teng, 2013: Last millennium climate and its variability in CCSM4. J. Climate, 26, 1085–1111, https://doi.org/10.1175/JCLI-D-11-00326.1.
Lara, A., and R. Villalba, 1993: A 3620-year temperature record from Fitzroya Cupressoides tree rings in southern South America. Science, 260, 1104–1106, https://doi.org/10.1126/science.260.5111.1104.
Le, T., J. Sjolte, and R. Muscheler, 2016: The influence of external forcing on subdecadal variability of regional surface temperature in CMIP5 simulations of the last millennium. J. Geophys. Res., 121, 1671–1682, https://doi.org/10.1002/2015JD024423.
Lean, J. L., 2018: Estimating solar irradiance since 850 CE. Earth Space Sci., 5, 133–149, https://doi.org/10.1002/2017EA000357.
Leduc, G., R. Schneider, J.-H. Kim, and G. Lohmann, 2010: Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev., 29, 989–1004, https://doi.org/10.1016/j.quascirev.2010.01.004.
Lehner, F., F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker, 2015: Climate and carbon cycle dynamics in a CESM simulation from 850–2100 CE. Earth Syst. Dyn, 6, 411–434, https://doi.org/10.5194/esd-6-411-2015.
Lohmann, G., M. Pfeiffer, T. Laepple, G. Leduc, and J.-H. Kim, 2013: A model–data comparison of the Holocene global sea surface temperature evolution. Climate Past, 9, 1807–1839, https://doi.org/10.5194/cp-9-1807-2013.
Li, B., and J. Smerdon, 2012: Defining spatial comparison metrics for evaluation of paleoclimatic field reconstructions of the Common Era. Environmetrics, 23, 394–406, https://doi.org/10.1002/env.2142.
Liu, Y., and Coauthors, 2009: Annual temperatures during the last 2485 years in the Eastern Tibetan Plateau inferred from tree rings. Sci. China D, 52, 348–359, https://doi.org/10.1007/s11430-009-0025-z.
Liu, Z., and Coauthors, 2014: The Holocene temperature conundrum. Proc. Natl. Acad. Sci. USA, 111, E3501–E3505, https://doi.org/10.1073/pnas.1407229111.
Ljungqvist, F. C., P. J. Krusic, G. Brattström, and H. S. Sundqvist, 2012: Northern Hemisphere temperature patterns in the last 12 centuries. Climate Past, 8, 227–249, https://doi.org/10.5194/cp-8-227-2012.
Ljungqvist, F. C., P. J. Krusic, H. S. Sundqvist, E. Zorita, G. Brattström, and D. Frank, 2016: Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature, 532, 94–98, https://doi.org/10.1038/nature17418.
Loso, M. G., 2009: Summer temperatures during the Medieval Warm Period and Little Ice Age inferred from varved proglacial lake sediments in southern Alaska. J. Paleolimnol., 41, 117–128, https://doi.org/10.1007/s10933-008-9264-9.
Loso, M. G., R. S. Anderson, S. P. Anderson, and P. J. Reimer, 2006: A 1500-year record of temperature and glacial response inferred from varved Iceberg Lake, southcentral Alaska. Quat. Res., 66, 12–24, https://doi.org/10.1016/j.yqres.2005.11.007.
Lovejoy, S., and C. Varotsos, 2016: Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings. Earth Syst. Dyn., 7, 133–150, https://doi.org/10.5194/esd-7-133-2016.
Lovejoy, S., D. Schertzer, and D. Varon, 2013: Do GCM’s predict the climate… or macroweather? Earth Syst. Dyn., 4, 439–454, https://doi.org/10.5194/esd-4-439-2013.
Luckman, B. H., and R. J. S. Wilson, 2005: Summer temperatures in the Canadian Rockies during the last millennium: A revised record. Climate Dyn., 24, 131–144, https://doi.org/10.1007/s00382-004-0511-0.
Luoto, T. P., and S. Helama, 2010: Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: tHe role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quat. Sci. Rev., 29, 2411–2423, https://doi.org/10.1016/j.quascirev.2010.06.015.
Luterbacher, J., and Coauthors, 2016: European summer temperatures since Roman times. Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001.
MacFarling Meure, C., D. Etheridge, C. Trudinger, P. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins, 2006: Law dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152.
Machida, T., T. Nakazawa, Y. Fujii, S. Aoki, and O. Watanabe, 1995: Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys. Res. Lett., 22, 2921–2924, https://doi.org/10.1029/95GL02822.
Madec, G., 2008: NEMO ocean engine. Note du Pôle de Modélisation de l’Institut Pierre-Simon Laplace 27, 209 pp.
Mangini, A., C. Spötl, and P. Verdes, 2005: Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet. Sci. Lett., 235, 741–751, https://doi.org/10.1016/j.epsl.2005.05.010.
Martín-Chivelet, J., M. B. Muñoz-García, R. L. Edwards, M. J. Turrero, and A. I. Ortega, 2011: Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Global Planet. Change, 77, 1–12, https://doi.org/10.1016/j.gloplacha.2011.02.002.
Masson-Delmotte, V., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464.
McCabe-Glynn, S., K. R. Johnson, C. Strong, M. Berkelhammer, A. Sinha, H. Cheng, and R. L. Edwards, 2013: Variable North Pacific influence on drought in southwestern North America since AD 854. Nat. Geosci., 6, 617–621, https://doi.org/10.1038/ngeo1862.
McGlone, M. S., C. S. M. Turney, J. M. Wilmshurst, and K. Pahnke, 2010: Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nat. Geosci., 3, 622–626, https://doi.org/10.1038/ngeo931.
McGregor, H. V., M. Dima, H. W. Fischer, and S. Mulitzal, 2007: Rapid 20th-century increase in coastal upwelling off northwest Africa. Science, 315, 637–639, https://doi.org/10.1126/science.1134839.
McKay, N. P., and D. S. Kaufman, 2014: An extended Arctic proxy temperature database for the past 2,000 years. Sci. Data, 1, 140026, https://doi.org/10.1038/sdata.2014.26.
McKay, N. P., D. S. Kaufman, and N. Michelutti, 2008: Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophys. Res. Lett., 35, L05709, https://doi.org/10.1029/2007GL032876.
Melvin, T. M., H. Grudd, and K. R. Briffa, 2013: Potential bias in “updating” tree-ring chronologies using regional curve standardisation: Re-processing 1500 years of Torneträsk density and ring-width data. Holocene, 23, 364–373, https://doi.org/10.1177/0959683612460791.
Miettinen, A., D. Divine, N. Koç, F. Godtliebsen, and I. R. Hall, 2012: Multicentennial variability of the sea surface temperature gradient across the subpolar North Atlantic over the last 2.8 kyr. J. Climate, 25, 4205–4219, https://doi.org/10.1175/JCLI-D-11-00581.1.
Miettinen, A., D. Divine, K. Husum, N. Koç, and A. E. Jennings, 2015: Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly. Paleoceanography, 30, 1657–1674, https://doi.org/10.1002/2015PA002849.
Miller, G. H., and Coauthors, 2012: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168.
Millet, L., F. Arnaud, O. Heiri, M. Magny, V. Verneaux, and M. Desmet, 2009: Late-Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps. Holocene, 19, 317–328, https://doi.org/10.1177/0959683608100576.
Mitchell, D. M., and Coauthors, 2015: Solar signals in CMIP-5 simulations: The stratospheric pathway. Quart. J. Roy. Meteor. Soc., 141, 2390–2403, https://doi.org/10.1002/qj.2530.
Moberg, A., 2013: Comparisons of simulated and observed Northern Hemisphere temperature variations during the past millennium – Selected lessons learned and problems encountered. Tellus, 65B, 19 921, https://doi.org/10.3402/tellusb.v65i0.19921.
Moberg, A., and G. Brattström, 2011: Prediction intervals for climate reconstructions with autocorrelated noise—An analysis of ordinary least squares and measurement error methods. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 313–329, https://doi.org/10.1016/j.palaeo.2011.05.035.
Moberg, A., R. Sundberg, H. Grudd, and A. Hind, 2015: Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 3: Practical considerations, relaxed assumptions, and using tree-ring data to address the amplitude of solar forcing. Climate Past, 11, 425–448, https://doi.org/10.5194/cp-11-425-2015.
Moffa-Sánchez, P., I. R. Hall, S. Barker, D. J. R. Thornalley, and I. Yashayaev, 2014: Surface changes in the eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography, 29, 160–175, https://doi.org/10.1002/2013PA002523.
Mohtadi, M., O. E. Romero, J. Kaiser, and D. Hebbeln, 2007: Cooling of the southern high latitudes during the Medieval Period and its effect on ENSO. Quat. Sci. Rev., 26, 1055–1066, https://doi.org/10.1016/j.quascirev.2006.12.008.
Moore, J. J., K. A. Hughen, G. H. Miller, and J. T. Overpeck, 2001: Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. J. Paleolimnol., 25, 503–517, https://doi.org/10.1023/A:1011181301514.
Mulvaney, R., and Coauthors, 2012: Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature, 489, 141–144, https://doi.org/10.1038/nature11391.
Munz, P. M., and Coauthors, 2015: Decadal-resolution record of winter monsoon intensity over the last two millennia from planktic foraminiferal assemblages in the northeastern Arabian Sea. Holocene, 25, 1756–1771, https://doi.org/10.1177/0959683615591357.
Muschitiello, F., Q. Zhang, H. S. Sundqvist, F. J. Davies, and H. Renssen, 2015: Arctic climate response to the termination of the African Humid Period. Quat. Sci. Rev., 125, 91–97, https://doi.org/10.1016/j.quascirev.2015.08.012.
Naurzbaev, M. M., E. A. Vaganov, O. V. Sidorova, and F. H. Schweingruber, 2002: Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene, 12, 727–736, https://doi.org/10.1191/0959683602hl586rp.
Nemenyi, P., 1963: Distribution-free multiple comparisons. Ph.D. dissertation, Princeton University, 254 pp.
Neukom, R., A. P. Schurer, N. J. Steiger, and G. C. Hegerl, 2018: Possible causes of data model discrepancy in the temperature history of the last millennium. Sci. Rep., 8, 7572, https://doi.org/10.1038/s41598-018-25862-2.
Newton, A., R. Thunell, and L. Stott, 2011: Changes in the Indonesian Throughflow during the past 2000 yr. Geology, 39, 63–66, https://doi.org/10.1130/G31421.1.
Nieto-Moreno, V., F. Martinez-Ruiz, S. Giralt, D. Gallego-Torres, J. García-Orellana, P. Masqué, and M. Ortega-Huertas, 2013: Climate imprints during the ‘Medieval Climate Anomaly’ and the ‘Little Ice Age’ in marine records from the Alboran Sea basin. Holocene, 23, 1227–1237, https://doi.org/10.1177/0959683613484613.
Nowack, P. J., N. L. Abraham, P. Braesicke, and J. A. Pyle, 2018: The impact of stratospheric ozone feedbacks on climate sensitivity estimates. J. Geophys. Res. Atmos., 123, 4630–4641, https://doi.org/10.1002/2017JD027943.
Nyberg, J., B. A. Malmgren, A. Kuijpers, and A. Winter, 2002: A centennial-scale variability of tropical North Atlantic surface hydrography during the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 25–41, https://doi.org/10.1016/S0031-0182(01)00446-1.
Oppo, D. W., Y. Rosenthal, and B. K. Linsley, 2009: 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacific warm pool. Nature, 460, 1113–1116, https://doi.org/10.1038/nature08233.
Otto-Bliesner, B. L., N. Rosenbloom, E. J. Stone, N. P. McKay, D. J. Lunt, E. C. Brady, and J. T. Overpeck, 2013: How warm was the last interglacial? New model–data comparisons. Philos. Trans. Roy. Soc. London, 371A, 20130097, https://doi.org/10.1098/rsta.2013.0097.
Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735–754, https://doi.org/10.1175/BAMS-D-14-00233.1.
PAGES2k-PMIP3 Group, 2015: Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Climate Past, 11, 1673–1699, https://doi.org/10.5194/cp-11-1673-2015.
PAGES 2k Consortium, 2013: Continental-scale temperature variability during the last two millennia. Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797.
PAGES 2k Consortium, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88.
PAGES Hydro2k Consortium, 2017: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017.
Pausata, F. S. R., G. Messori, and Q. Zhang, 2016: Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett., 434, 298–307, https://doi.org/10.1016/j.epsl.2015.11.049.
Pei, Q., D. D. Zhang, J. Li, and H. F. Lee, 2017: Proxy-based Northern Hemisphere temperature reconstruction for the mid-to-late Holocene. Theor. Appl. Climatol., 130, 1043–1053, https://doi.org/10.1007/s00704-016-1932-5.
Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature, 399, 429–436, https://doi.org/10.1038/20859.
Phipps, S. J., and Coauthors, 2013: Paleoclimate data–model comparison and the role of climate forcings over the past 1500 years. J. Climate, 26, 6915–6936, https://doi.org/10.1175/JCLI-D-12-00108.1.
Phipps, S. J., L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd, 2011: The CSIRO Mk3L climate system model version 1.0—Part 1.0: Description and evaluation. Geosci. Model Dev., 4, 483–509, https://doi.org/10.5194/gmd-4-483-2011.
Phipps, S. J., L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd, 2012: The CSIRO Mk3L climate system model version 1.0—Part 2: Response to external forcings. Geosci. Model Dev., 5, 649–682, https://doi.org/10.5194/gmd-5-649-2012.
Pla, S., and J. Catalan, 2005: Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climate Dyn., 24, 263–278, https://doi.org/10.1007/s00382-004-0482-1.
Pollack, H. N., and J. E. Smerdon, 2004: Borehole climate reconstructions: Spatial structure and hemispheric averages. J. Geophys. Res., 109, D11106, https://doi.org/10.1029/2003JD004163.
Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2008: A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles, 22, GB3018, https://doi.org/10.1029/2007GB003153.
Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2009: Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochem. Cycles, 23, GB4001, https://doi.org/10.1029/2009GB003488.
Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123–146, https://doi.org/10.1007/s003820050009.
Ran, L., H. Jiang, K. L. Knudsen, and J. Eiríksson, 2011: Diatom-based reconstruction of palaeoceanographic changes on the North Icelandic shelf during the last millennium. Palaeogeogr. Palaeoclimatol. Palaeoecol., 302, 109–119, https://doi.org/10.1016/j.palaeo.2010.02.001.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Richey, J. N., R. Z. Poore, B. P. Flower, and T. M. Quinn, 2007: 1400 yr multi-proxy record of climate variability from the northern Gulf of Mexico. Geology, 35, 423–426, https://doi.org/10.1130/G23507A.1.
Richey, J. N., D. J. Hollander, B. P. Flower, and T. I. Eglinton, 2011: Merging late Holocene molecular organic and foraminiferal-based geochemical records of sea surface temperature in the Gulf of Mexico. Paleoceanography, 26, PA1209, https://doi.org/10.1029/2010PA002000.
Richter, T. O., F. J. C. Peeters, and T. C. E. van Weering, 2009: Late Holocene (0–2.4 ka BP) surface water temperature and salinity variability, Feni Drift, NE Atlantic Ocean. Quat. Sci. Rev., 28, 1941–1955, https://doi.org/10.1016/j.quascirev.2009.04.008.
Rosell-Melé, A., and Coauthors, 2001: Precision of the current methods to measure the alkenone proxy U37 K′ and absolute alkenone abundance in sediments: Results of an interlaboratory comparison study. Geochem. Geophys. Geosyst., 2, 1046, https://doi.org/10.1029/2000GC000141.
Rosenthal, Y., B. K. Linsley, and D. W. Oppo, 2013: Pacific Ocean heat content during the past 10,000 years. Science, 342, 617–621, https://doi.org/10.1126/science.1240837.
Rosenthal, Y., J. Kalansky, A. Morley, and B. Linsley, 2017: A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era. Quat. Sci. Rev., 155, 1–12, https://doi.org/10.1016/j.quascirev.2016.10.017.
Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C. Hirst, J. I. Syktus, and K. K. Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 6377–6404, https://doi.org/10.5194/acp-12-6377-2012.
Salzer, M. W., and K. F. Kipfmueller, 2005: Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, U.S.A. Climatic Change, 70, 465–487, https://doi.org/10.1007/s10584-005-5922-3.
Schmidt, R., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153–192, https://doi.org/10.1175/JCLI3612.1.
Schmidt, R., 2010: Enhancing the relevance of palaeoclimate model/data comparisons for assessments of future climate change. J. Quat. Sci., 25, 79–87, https://doi.org/10.1002/jqs.1314.
Schmidt, R., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.0). Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011.
Schmidt, R., 2012: Interactive comment on “Constraining the temperature history of the past millennium using early instrumental observations” by P. Brohan et al. Climate Past Discuss., 8, C393–C398.
Schmidt, R., and Coauthors, 2012: Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci. Model Dev., 5, 185–191, https://doi.org/10.5194/gmd-5-185-2012.
Schmidt, R., and Coauthors, 2014a: Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014.
Schmidt, R., and Coauthors, 2014b: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141–184, https://doi.org/10.1002/2013MS000265.
Schurer, A. P., G. C. Hegerl, M. E. Mann, S. F. B. Tett, and S. J. Phipps, 2013: Separating forced from chaotic climate variability over the past millennium. J. Climate, 26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1.
Schurer, A. P., S. F. B. Tett, and G. C. Hegerl, 2014: Small influences of solar variability on climate over the past millennium. Nat. Geosci., 7, 104–108, https://doi.org/10.1038/ngeo2040.
Sepúlveda, J., S. Pantoja, K. A. Hughen, S. Bertrand, D. Figueroa, T. Leon, N. J. Drenzek, and C. Lange, 2009: Late Holocene sea-surface temperature and precipitation variability in northern Patagonia, Chile (Jacaf Fjord, 44°S). Quat. Res., 72, 400–409, https://doi.org/10.1016/j.yqres.2009.06.010.
Shapiro, A. I., W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A. V. Shapiro, and S. Nyeki, 2011: A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys., 529, A67, https://doi.org/10.1051/0004-6361/201016173.
Shevenell, A., A. Ingalls, E. Domack, and C. Kelly, 2011: Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature, 470, 250–254, https://doi.org/10.1038/nature09751.