• Albern, N., A. Voigt, and J. G. Pinto, 2019: Cloud-radiative impact on the regional responses of the midlatitude jet streams and storm tracks to global warming. J. Adv. Model. Earth Syst., 11, 19401958, https://doi.org/10.1029/2018MS001592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., 1992: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5, 944958, https://doi.org/10.1175/1520-0442(1992)005<0944:MAIDEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: Influence of ENSO teleconnnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea temperature. J. Phys. Oceanogr., 22, 859881, https://doi.org/10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, https://doi.org/10.1007/s40641-015-0010-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, https://doi.org/10.1029/2012GL053115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and A. D. D. Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation mode. Climate Dyn., 32, 355369, https://doi.org/10.1007/s00382-008-0386-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crueger, T., and B. Stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 854864, https://doi.org/10.1002/2015MS000434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eguchi, N., and M. Shiotani, 2004: Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. J. Geophys. Res., 109, D12106, https://doi.org/10.1029/2003JD004314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fermepin, S., and S. Bony, 2014: Influence of low-cloud radiative effects on tropical circulation and precipitation. J. Adv. Model. Earth Syst., 6, 513526, https://doi.org/10.1002/2013MS000288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fläschner, D., T. Mauritsen, B. Stevens, and S. Bony, 2018: The signature of shallow circulations, not cloud radiative effects, in the spatial distribution of tropical precipitation. J. Climate, 31, 94899505, https://doi.org/10.1175/JCLI-D-18-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., B. Medeiros, J. J. Benedict, and J. G. Olson, 2019: Investigating the influence of cloud radiative effects on the extratropical storm tracks. Geophys. Res. Lett., 46, 77007707, https://doi.org/10.1029/2019GL083542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., and D. L. Hartmann, 2016: The role of cloud radiative heating in determining the location of the ITCZ in aquaplanet simulations. J. Climate, 29, 27412763, https://doi.org/10.1175/JCLI-D-15-0521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. E. Waliser, J.-L. Li, and C. Woods, 2011: Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Climate Dyn., 36, 22192232, https://doi.org/10.1007/S00382-010-0853-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langen, P. L., R. G. Graversen, and T. Mauritsen, 2012: Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. J. Climate, 25, 30103024, https://doi.org/10.1175/JCLI-D-11-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14 21914 233, https://doi.org/10.1029/2001JD900143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and D. W. J. Thompson, 2016: Observed signatures of the barotropic and baroclinic annular modes in cloud vertical structure and cloud radiative effects. J. Climate, 29, 47234740, https://doi.org/10.1175/JCLI-D-15-0692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, Y. Huang, and M. Zhang, 2014a: Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys. Res. Lett., 41, 16811688, https://doi.org/10.1002/2013GL059113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, G. L. Stephens, and S. Bony, 2014b: A global survey of the linkages between cloud vertical structure and large-scale climate. J. Geophys. Res. Atmos., 119, 37703792, https://doi.org/10.1002/2013JD020669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, https://doi.org/10.1175/JCLI-D-14-00825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, and Y. Huang, 2017: The influence of atmospheric cloud radiative effects on the large-scale stratospheric circulation. J. Climate, 30, 56215635, https://doi.org/10.1175/JCLI-D-16-0643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, S. Bony, and T. M. Merlis, 2019: Thermodynamic control on the poleward shift of the extratropical jet in climate change simulations. J. Climate, 32, 917934, https://doi.org/10.1175/JCLI-D-18-0417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., D. Kim, M. Lee, and I. Kang, 2007: Effects of cloud-radiative heating on Atmospheric General Circulation Model (AGCM) simulations of convectively coupled equatorial waves. J. Geophys. Res., 112, D24107, https://doi.org/10.1029/2006JD008291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37, 12711292, https://doi.org/10.1007/s00382-010-0895-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 42754293, https://doi.org/10.1175/JCLI-D-11-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, D., and Z. Kuang, 2011: Modulation of radiative heating by the Madden-Julian oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophys. Res. Lett., 38, L21813, https://doi.org/10.1029/2011GL049734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden-Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, https://doi.org/10.1029/2008JD009986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, https://doi.org/10.1029/2012MS000154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., R. G. Graversen, D. Klocke, P. L. Langen, B. Stevens, and L. Tomassini, 2013: Climate feedback efficiency and synergy. Climate Dyn., 41, 25392554, https://doi.org/10.1007/s00382-013-1808-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middlemas, E. A., A. C. Clement, B. Medeiros, and B. Kirtman, 2019: Cloud radiative feedbacks and El Niño–Southern Oscillation. J. Climate, 32, 46614680, https://doi.org/10.1175/JCLI-D-18-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A. J., 1992: Large-scale ocean–atmosphere interactions in a simplified coupled model of the midlatitude wintertime circulation. J. Atmos. Sci., 49, 273286, https://doi.org/10.1175/1520-0469(1992)049<0273:LSOAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., T. Mauritsen, and D. Notz, 2019: Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci., 12, 430434, https://doi.org/10.1038/s41561-019-0363-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei, K. Bellomo, and A. Clement, 2016: Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nat. Geosci., 9, 106110, https://doi.org/10.1038/ngeo2630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, https://doi.org/10.1175/JAS-D-11-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., B. P. Kirtman, and R. S. Lindzen, 1999: Tropospheric water vapor and climate sensitivity. J. Atmos. Sci., 56, 16491658, https://doi.org/10.1175/1520-0469(1999)056<1649:TWVACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., and J. H. Jiang, 2013: Tropical clouds and circulation changes during the 2006–07 and 2009–10 El Niños. J. Climate, 26, 399413, https://doi.org/10.1175/JCLI-D-12-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., J. H. Jiang, J. Teixeira, A. Gettelman, X. Huang, G. Stephens, D. Vane, and V. S. Perun, 2011: Comparison of regime-sorted tropical cloud profiles observed by CloudSat with GEOS5 analyses and two general circulation model simulations. J. Geophys. Res., 116, D09104, https://doi.org/10.1029/2010JD014971.

    • Search Google Scholar
    • Export Citation
  • Tromeur, E., and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the MJO. J. Climate, 23, 18371853, https://doi.org/10.1175/2009JCLI3240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2016: Impact of regional atmospheric cloud radiative changes on shifts of the extratropical jet stream in response to global warming. J. Climate, 29, 83998421, https://doi.org/10.1175/JCLI-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., N. Albern, and G. Papavasileiou, 2019: The atmospheric pathway of the cloud-radiative impact on the circulation response to global warming: Important and uncertain. J. Climate, 32, 30513067, https://doi.org/10.1175/JCLI-D-18-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., and D. L. Hartmann, 2015: On the influence of poleward jet shift on shortwave cloud feedback in global climate models. J. Adv. Model. Earth Syst., 7, 20442059, https://doi.org/10.1002/2015MS000520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watt-Meyer, O., and D. M. W. Frierson, 2017: Local and emote impacts of atmospheric cloud radiative effects onto the eddy-driven jet. Geophys. Res. Lett., 44, 10 03610 044, https://doi.org/10.1002/2017GL074901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470, https://doi.org/10.1175/1520-0442-12.1.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and G. J. Boer, 2006: The variance of sea surface temperature and projected changes with global warming. Climate Dyn., 26, 801821, https://doi.org/10.1007/s00382-006-0117-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze, 2013: Deep convective systems observed by A-Train in the tropical Indo-Pacific region affected by the MJO. J. Atmos. Sci., 70, 465486, https://doi.org/10.1175/JAS-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Klein, G. G. Mace, and J. Boyl, 2007: Cluster analysis of tropical clouds using CloudSat data. Geophys. Res. Lett., 34, L12813, https://doi.org/10.1029/2007GL029336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurovac-Jevtić, D., S. Bony, and K. Emanuel, 2006: On the role of clouds and moisture in tropical waves: A two-dimensional model study. J. Atmos. Sci., 63, 21402155, https://doi.org/10.1175/JAS3738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 29 29 12
Full Text Views 9 9 7
PDF Downloads 9 9 7

A Basic Effect of Cloud Radiative Effects on Tropical Sea Surface Temperature Variability

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • 2 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

Cloud radiative effects (CREs) are known to play a central role in governing the long-term mean distribution of sea surface temperatures (SSTs). Very recent work suggests that CREs may also play a role in governing the variability of SSTs in the context of El Niño–Southern Oscillation. Here, the authors exploit numerical simulations in the Max Planck Institute Earth System Model with two different representations of CREs to demonstrate that coupling between CREs and the atmospheric circulation has a much more general and widespread effect on tropical climate than that indicated in previous work. The results reveal that coupling between CREs and the atmospheric circulation leads to robust increases in SST variability on time scales longer than a month throughout the tropical oceans. Remarkably, cloud–circulation coupling leads to more than a doubling of the amplitude of decadal-scale variability in tropical-mean SSTs. It is argued that the increases in tropical SST variance derive primarily from the coupling between SSTs and shortwave CREs: Coupling increases the memory in shortwave CREs on hourly and daily time scales and thus reddens the spectrum of shortwave CREs and increases their variance on time scales spanning weeks to decades. Coupling between SSTs and CREs does not noticeably affect the variance of SSTs in the extratropics, where the effects from variability in CREs on the surface energy budget are much smaller than the effects from the turbulent heat fluxes. The results indicate a basic but critical role of CREs in climate variability throughout the tropics.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Thompson, david.thompson@colostate.edu

Abstract

Cloud radiative effects (CREs) are known to play a central role in governing the long-term mean distribution of sea surface temperatures (SSTs). Very recent work suggests that CREs may also play a role in governing the variability of SSTs in the context of El Niño–Southern Oscillation. Here, the authors exploit numerical simulations in the Max Planck Institute Earth System Model with two different representations of CREs to demonstrate that coupling between CREs and the atmospheric circulation has a much more general and widespread effect on tropical climate than that indicated in previous work. The results reveal that coupling between CREs and the atmospheric circulation leads to robust increases in SST variability on time scales longer than a month throughout the tropical oceans. Remarkably, cloud–circulation coupling leads to more than a doubling of the amplitude of decadal-scale variability in tropical-mean SSTs. It is argued that the increases in tropical SST variance derive primarily from the coupling between SSTs and shortwave CREs: Coupling increases the memory in shortwave CREs on hourly and daily time scales and thus reddens the spectrum of shortwave CREs and increases their variance on time scales spanning weeks to decades. Coupling between SSTs and CREs does not noticeably affect the variance of SSTs in the extratropics, where the effects from variability in CREs on the surface energy budget are much smaller than the effects from the turbulent heat fluxes. The results indicate a basic but critical role of CREs in climate variability throughout the tropics.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Thompson, david.thompson@colostate.edu
Save