• Andrews, T., and M. J. Webb, 2017: The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. J. Climate, 31, 641654, https://doi.org/10.1175/JCLI-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., and Coauthors, 2018: Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett., 45, 84908499, https://doi.org/10.1029/2018GL078887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., 2017: Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Climate Change, 7, 331335, https://doi.org/10.1038/nclimate3278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrhenius, P. S., 1896: XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci., 41, 237276, https://doi.org/10.1080/14786449608620846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloch-Johnson, J., R. T. Pierrehumbert, and D. S. Abbot, 2015: Feedback temperature dependence determines the risk of high warming. Geophys. Res. Lett., 42, 49734980, https://doi.org/10.1002/2015GL064240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and B. Yu, 2003a: Climate sensitivity and response. Climate Dyn., 20, 415429, https://doi.org/10.1007/s00382-002-0283-3.

  • Boer, G. J., and B. Yu, 2003b: Climate sensitivity and climate state. Climate Dyn., 21, 167176, https://doi.org/10.1007/s00382-003-0323-7.

  • Brown, P. T., W. Li, J. H. Jiang, and H. Su, 2016: Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales. J. Climate, 29, 925940, https://doi.org/10.1175/JCLI-D-15-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl. Acad. Sci. USA, 114, 13 12613 131, https://doi.org/10.1073/pnas.1714308114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and J. M. Gregory, 2019: A refined model for the Earth’s global energy balance. Climate Dyn., 53, 47814797, https://doi.org/10.1007/s00382-019-04825-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, Y.-S., H. Cho, C.-H. Ho, R. S. Lindzen, S. K. Park, and X. Yu, 2014: Influence of non-feedback variations of radiation on the determination of climate feedback. Theor. Appl. Climatol., 115, 355364, https://doi.org/10.1007/s00704-013-0998-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., and S. J. Devlin, 1988: Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Stat. Assoc., 83, 596610, https://doi.org/10.1080/01621459.1988.10478639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, R., and L. Hanson, 2017: On the relative strength of radiative feedbacks under climate variability and change. Climate Dyn., 49, 21152129, https://doi.org/10.1007/s00382-016-3441-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., C. Huntingford, and M. S. Williamson, 2018: Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553, 319322, https://doi.org/10.1038/nature25450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592, https://doi.org/10.1175/2011JCLI3863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, https://doi.org/10.1126/science.1192546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2013: Observations of climate feedbacks over 2000–10 and comparisons to climate models. J. Climate, 26, 333342, https://doi.org/10.1175/JCLI-D-11-00640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., T. Mauritsen, and B. Stevens, 2018: The influence of internal variability on Earth’s energy balance framework and implications for estimating climate sensitivity. Atmos. Chem. Phys., 18, 51475155, https://doi.org/10.5194/acp-18-5147-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019: Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: The preeminence of the western Pacific. J. Climate, 32, 54715491, https://doi.org/10.1175/JCLI-D-18-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013a: Four perspectives on climate feedbacks. Geophys. Res. Lett., 40, 40074011, https://doi.org/10.1002/grl.50711.

  • Feldl, N., and G. H. Roe, 2013b: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, https://doi.org/10.1175/JCLI-D-12-00631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M. F., and J. M. Gregory, 2006: The climate sensitivity and its components diagnosed from Earth radiation budget data. J. Climate, 19, 3952, https://doi.org/10.1175/JCLI3611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., 2019: Observational evidence for two modes of coupling between sea surface temperatures, tropospheric temperature profile, and shortwave cloud radiative effect in the tropics. Geophys. Res. Lett., 46, 98909898, https://doi.org/10.1029/2019GL083990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, https://doi.org/10.1175/2007JCLI1834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J., and T. Andrews, 2016: Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett., 43, 39113920, https://doi.org/10.1002/2016GL068406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner, 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15, 31173121, https://doi.org/10.1175/1520-0442(2002)015<3117:AOBEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-de-la-Cuesta, D., and T. Mauritsen, 2019: Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci., 12, 902905, https://doi.org/10.1038/s41561-019-0463-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonko, A. K., K. M. Shell, B. M. Sanderson, and G. Danabasoglu, 2013: Climate feedbacks in CCSM3 under changing CO2 forcing. Part II: Variation of climate feedbacks and sensitivity with forcing. J. Climate, 26, 27842795, https://doi.org/10.1175/JCLI-D-12-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surv. Geophys., 38, 13071329, https://doi.org/10.1007/s10712-017-9433-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koll, D. D. B., and T. W. Cronin, 2018: Earth’s outgoing longwave radiation linear due to H2O greenhouse effect. Proc. Natl. Acad. Sci. USA, 115, 10 29310 298, https://doi.org/10.1073/pnas.1809868115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leconte, J., F. Forget, B. Charnay, R. Wordsworth, and A. Pottier, 2013: Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature, 504, 268271, https://doi.org/10.1038/nature12827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, N., and J. A. Curry, 2015: The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Climate Dyn., 45, 10091023, https://doi.org/10.1007/s00382-014-2342-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, N., and J. A. Curry, 2018: The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. J. Climate, 31, 60516071, https://doi.org/10.1175/JCLI-D-17-0667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and C. E. Forest, 2014: Estimating the sensitivity of the atmospheric teleconnection patterns to SST anomalies using a linear statistical method. J. Climate, 27, 90659081, https://doi.org/10.1175/JCLI-D-14-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., C. E. Forest, and J. Barsugli, 2012: Comparing two methods to estimate the sensitivity of regional climate simulations to tropical SST anomalies. J. Geophys. Res., 117, D20103, https://doi.org/10.1029/2011JD017186.

    • Search Google Scholar
    • Export Citation
  • Libardoni, A. G., C. E. Forest, A. P. Sokolov, and E. Monier, 2019: Underestimating internal variability leads to narrow estimates of climate system properties. Geophys. Res. Lett., 46, 10 00010 007, https://doi.org/10.1029/2019GL082442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., M.-D. Chou, and A. Y. Hou, 2001: Does the Earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82, 417432, https://doi.org/10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. Lu, O. Garuba, L. R. Leung, Y. Luo, and X. Wan, 2018: Sensitivity of surface temperature to oceanic forcing via q-flux Green’s function experiments. Part I: Linear response function. J. Climate, 31, 36253641, https://doi.org/10.1175/JCLI-D-17-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134148, https://doi.org/10.1175/2007JCLI1826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and K. Takahashi, 2018: What can the internal variability of CMIP5 models tell us about their climate sensitivity? J. Climate, 31, 50515069, https://doi.org/10.1175/JCLI-D-17-0736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and M. Popp, 2019: Probing the sources of uncertainty in transient warming on different timescales. Geophys. Res. Lett., 46, 11 36711 377, https://doi.org/10.1029/2019GL084018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and B. Stevens, 2015: Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci., 8, 346351, https://doi.org/10.1038/ngeo2414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meraner, K., T. Mauritsen, and A. Voigt, 2013: Robust increase in equilibrium climate sensitivity under global warming. Geophys. Res. Lett., 40, 59445948, https://doi.org/10.1002/2013GL058118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., S. Solomon, R. W. Portmann, K. H. Rosenlof, P. M. Forster, and T. Wong, 2009: An observationally based energy balance for the Earth since 1950. J. Geophys. Res., 114, D17107, https://doi.org/10.1029/2009JD012105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1995: Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part I: Control climate and flux adjustment. J. Climate, 8, 3656, https://doi.org/10.1175/1520-0442(1995)008<0036:TROTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 1979: Carbon dioxide and climate: A scientific assessment. National Academies Press, 34 pp., https://doi.org/10.17226/12181.

    • Crossref
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, https://doi.org/10.1038/ngeo1836.

  • Po-Chedley, S., K. C. Armour, C. M. Bitz, M. D. Zelinka, B. D. Santer, and Q. Fu, 2018: Sources of intermodel spread in the lapse rate and water vapor feedbacks. J. Climate, 31, 31873206, https://doi.org/10.1175/JCLI-D-17-0674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proistosescu, C., and P. J. Huybers, 2017: Slow climate mode reconciles historical and model-based estimates of climate sensitivity. Sci. Adv., 3, e1602821, https://doi.org/10.1126/sciadv.1602821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proistosescu, C., A. Donohoe, K. C. Armour, G. H. Roe, M. F. Stuecker, and C. M. Bitz, 2018: Radiative feedbacks from stochastic variability in surface temperature and radiative imbalance. Geophys. Res. Lett., 45, 50825094, https://doi.org/10.1029/2018GL077678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., and M. B. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318, 629632, https://doi.org/10.1126/science.1144735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and L. Rayborn, 2016: The effects of ocean heat uptake on transient climate sensitivity. Curr. Climate Change Rep., 2, 190201, https://doi.org/10.1007/s40641-016-0048-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., K. Caldeira, and R. Knutti, 2016: Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes. Geophys. Res. Lett., 43, 98779885, https://doi.org/10.1002/2016GL070907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2019: LongRunMIP: Motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Amer. Meteor. Soc., 100, 25512570, https://doi.org/10.1175/BAMS-D-19-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, https://doi.org/10.1029/2000GL011373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 2008: Potential biases in feedback diagnosis from observational data: A simple model demonstration. J. Climate, 21, 56245628, https://doi.org/10.1175/2008JCLI2253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 2011: On the misdiagnosis of surface temperature feedbacks from variations in Earth’s radiant energy balance. Remote Sens., 3, 16031613, https://doi.org/10.3390/rs3081603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, J. T. Fasullo, and S. Taguchi, 2015: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res. Atmos., 120, 36423659, https://doi.org/10.1002/2014JD022887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2000: Interpretation of simulated global warming using a simple model. J. Climate, 13, 202215, https://doi.org/10.1175/1520-0442(2000)013<0202:IOSGWU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, https://doi.org/10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344, https://doi.org/10.1175/2009JCLI3139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, https://doi.org/10.1175/JCLI-D-11-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci., 9, 871874, https://doi.org/10.1038/ngeo2828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst., 9, 21742189, https://doi.org/10.1002/2017MS001096.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 52 52 13
Full Text Views 3 3 2
PDF Downloads 4 4 3

Spatial Radiative Feedbacks from Internal Variability Using Multiple Regression

View More View Less
  • 1 NCAS-Climate, University of Reading, Reading, United Kingdom
  • 2 Max Planck Institute for Meteorology, Hamburg, Germany
  • 3 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois
© Get Permissions
Restricted access

Abstract

The sensitivity of the climate to CO2 forcing depends on spatially varying radiative feedbacks that act both locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length simulations performed with six coupled atmosphere–ocean general circulation models (AOGCMs). Given the spatial pattern of warming, the method does quite well at recreating the top-of-atmosphere flux response for most regions of Earth, except over the Southern Ocean where it consistently overestimates the change, leading to an overestimate of the sensitivity. For five of the six models, the method finds that local feedbacks are positive due to cloud processes, balanced by negative nonlocal shortwave cloud feedbacks associated with regions of tropical convection. For four of these models, the magnitudes of both are comparable to the Planck feedback, so that changes in the ratio between them could lead to large changes in climate sensitivity. The positive local feedback explains why observational studies that estimate spatial feedbacks using only local regressions predict an unstable climate. The method implies that sensitivity in these AOGCMs increases over time due to a reduction in the share of warming occurring in tropical convecting regions and the resulting weakening of associated shortwave cloud and longwave clear-sky feedbacks. Our results provide a step toward an observational estimate of time-varying climate sensitivity by demonstrating that many aspects of spatial feedbacks appear to be the same between internal variability and the forced response.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0396.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonah Bloch-Johnson, j.bloch-johnson@reading.ac.uk

Abstract

The sensitivity of the climate to CO2 forcing depends on spatially varying radiative feedbacks that act both locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length simulations performed with six coupled atmosphere–ocean general circulation models (AOGCMs). Given the spatial pattern of warming, the method does quite well at recreating the top-of-atmosphere flux response for most regions of Earth, except over the Southern Ocean where it consistently overestimates the change, leading to an overestimate of the sensitivity. For five of the six models, the method finds that local feedbacks are positive due to cloud processes, balanced by negative nonlocal shortwave cloud feedbacks associated with regions of tropical convection. For four of these models, the magnitudes of both are comparable to the Planck feedback, so that changes in the ratio between them could lead to large changes in climate sensitivity. The positive local feedback explains why observational studies that estimate spatial feedbacks using only local regressions predict an unstable climate. The method implies that sensitivity in these AOGCMs increases over time due to a reduction in the share of warming occurring in tropical convecting regions and the resulting weakening of associated shortwave cloud and longwave clear-sky feedbacks. Our results provide a step toward an observational estimate of time-varying climate sensitivity by demonstrating that many aspects of spatial feedbacks appear to be the same between internal variability and the forced response.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0396.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonah Bloch-Johnson, j.bloch-johnson@reading.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 24.97 MB)
Save