• Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2007: Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Climate, 20, 49204939, https://doi.org/10.1175/JCLI4284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, https://doi.org/10.1029/2006GL025766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., and W. R. Peltier, 2007: On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related? Geophys. Res. Lett., 34, L23705, https://doi.org/10.1029/2007GL031584.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2013: ERA-20C project. Meteorological Archival and Retrieval System on ECMWF, accessed 1 December 2018, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c.

  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C.-Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, https://doi.org/10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., M. A. Thyer, and G. Kuczera, 2013: Climate driver informed short-term drought risk evaluation. Water Resour. Res., 49, 23172326, https://doi.org/10.1002/wrcr.20222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. B. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Hoerling, J. Eischeid, K. Wolter, R. Dole, J. Perlwitz, and L. Cheng, 2016: Does El Niño intensity matter for California precipitation? Geophys. Res. Lett., 43, 819825, https://doi.org/10.1002/2015GL067102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Ji, X., J. D. Neelin, S.-K. Lee, and C. R. Mechoso, 2014: Interhemispheric teleconnections from tropical heat sources in intermediate and simple models. J. Climate, 27, 684697, https://doi.org/10.1175/JCLI-D-13-00017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, https://doi.org/10.1029/97JC01736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khedun, C. P., A. K. Mishra, V. P. Singh, and J. R. Giardino, 2014: A copula-based precipitation forecast model: Investigating the interdecadal modulation of ENSO’s impact on monthly precipitation. Water Resour. Res., 50, 580600, https://doi.org/10.1002/2013WR013763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiem, A. S., S. W. Franks, and G. Kuczera, 2003: Multi-decadal variability of flood risk. Geophys. Res. Lett., 30, 1035, https://doi.org/10.1029/2002GL015992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., M. Lee, P. J. Webster, D. Kim, and J. H. Yoo, 2013: A physical basis for the probabilistic prediction of the accumulated tropical cyclone kinetic energy in the western North Pacific. J. Climate, 26, 79817991, https://doi.org/10.1175/JCLI-D-12-00679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. R. Mechoso, C. Wang, and J. D. Neelin, 2013: Interhemispheric influence of the northern summer monsoons on the southern subtropical anticyclones. J. Climate, 26, 10 19310 204, https://doi.org/10.1175/JCLI-D-13-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., B. E. Mapes, C. Wang, D. B. Enfield, and S. J. Weaver, 2014: Springtime ENSO phase evolution and its relation to rainfall in the continental U.S. Geophys. Res. Lett., 41, 16731680, https://doi.org/10.1002/2013GL059137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., H. Lopez, E.-S. Chung, P. DiNezio, S.-W. Yeh, and A. T. Wittenberg, 2018: On the fragile relationship between El Niño and California rainfall. Geophys. Res. Lett., 45, 907915, https://doi.org/10.1002/2017GL076197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., M. J. McPhaden, and D. M. W. Frierson, 2017: The impact of the AMO on multidecadal ENSO variability. Geophys. Res. Lett., 44, 38773886, https://doi.org/10.1002/2017GL072524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., D. M. W. Frierson, and M. J. McPhaden, 2018: AMO forcing of multidecadal Pacific ITCZ variability. J. Climate, 31, 57495764, https://doi.org/10.1175/JCLI-D-17-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878, https://doi.org/10.1175/JCLI-D-11-00430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, R., F. Zheng, and X. Dong, 2018: ENSO frequency asymmetry and the Pacific decadal oscillation in observations and 19 CMIP5 models. Adv. Atmos. Sci., 35, 495506, https://doi.org/10.1007/s00376-017-7133-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, https://doi.org/10.1175/JCLI3579.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., and B. P. Kirtman, 2018: ENSO influence over the Pacific North American sector: Uncertainty due to atmospheric internal variability. Climate Dyn., 52, 61496172, https://doi.org/10.1007/s00382-018-4500-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, https://doi.org/10.1175/JCLI-D-12-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. H., T. Li, S. W. Yeh, and H. Kim, 2019: Effect of recent Atlantic warming in strengthening Atlantic–Pacific teleconnection on interannual timescale via enhanced connection with the Pacific meridional mode. Climate Dyn., 53, 371387, https://doi.org/10.1007/s00382-018-4591-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., and M. Latif, 2010: Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys. Res. Lett., 37, L24702, https://doi.org/10.1029/2010GL045560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. Li, F.-F. Jin, I.-S. Kang, and R. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., S.-I. An, B.-M. Kim, and J.-S. Kug, 2015: Asymmetric impact of Atlantic multidecadal oscillation on El Niño and La Niña characteristics. Geophys. Res. Lett., 42, 49985004, https://doi.org/10.1002/2015GL064381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, https://doi.org/10.1175/JCLI4283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdon, D., and S. Franks, 2007: Long-term drought risk assessment in the Lachlan River valley—A paleoclimate perspective. Australas. J. Water Res., 11, 145152, https://doi.org/10.1080/13241583.2007.11465319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S.-K. Lee, and C. R. Mechoso, 2010: Inter-hemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404418, https://doi.org/10.1175/2009JCLI3127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., B. Renard, and M. Thyer, 2015: The ENSO–precipitation teleconnection and its modulation by the interdecadal Pacific oscillation. J. Climate, 28, 47534773, https://doi.org/10.1175/JCLI-D-14-00722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, T. Li, and R. Huang, 2014: ENSO-phase dependent TD and MRG wave activity in the western North Pacific. Climate Dyn., 42, 12171227, https://doi.org/10.1007/s00382-013-1754-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zhang, J. Chen, and T. Feng, 2018: Impact of two types of El Niño on tropical cyclones over the western North Pacific: Sensitivity to location and intensity of Pacific warming. J. Climate, 31, 17251742, https://doi.org/10.1175/JCLI-D-17-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Hu, and B. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 6981, https://doi.org/10.1007/s13143-014-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D. S., O. Bothe, H. F. Graf, N.-E. Omrani, A. Rubino, and J. H. Jungclaus, 2016: A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophys. Res. Lett., 43, 784792, https://doi.org/10.1002/2015GL067284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., C. Wang, Z. Song, and S.-K. Lee, 2014: Remote effect of the model cold bias in the tropical North Atlantic on the warm bias in the tropical southeastern Pacific. J. Adv. Model. Earth Syst., 6, 10161026, https://doi.org/10.1002/2014MS000338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, https://doi.org/10.1175/JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. Chan, 2007: ENSO and the South China Sea summer monsoon onset. Int. J. Climatol., 27, 157167, https://doi.org/10.1002/joc.1380.

  • Zuo, J., W. Li, C. Sun, and H.-C. Ren, 2018: Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone. Climate Dyn., 52, 28372853, https://doi.org/10.1007/S00382-018-4298-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 27 27 15
Full Text Views 8 8 3
PDF Downloads 9 9 5

Pacific Mean-State Control of Atlantic Multidecadal Oscillation–El Niño Relationship

View More View Less
  • 1 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • 2 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • 3 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

We investigate the potential impacts of the interdecadal Pacific oscillation (IPO) and Atlantic multidecadal oscillation (AMO) on El Niño and the associated atmosphere and ocean dynamics by using the Community Earth System Model–Large Ensemble Simulation (CESM-LENS). The individual effects of IPO and AMO on El Niño frequency and the underlying atmosphere–ocean processes are well reproduced in CESM-LENS and agree with previous studies. However, the sensitivity of El Niño frequency to the AMO is robust mainly during the negative IPO phase and very weak during the positive IPO phase. Further analysis suggests that the atmospheric mean state in the Pacific is much amplified during the negative IPO phase, facilitating the AMO-induced interocean atmospheric teleconnections. More specifically, during the negative IPO phase of the amplified mean state, the positive AMO enhances ascending motion from the northeastern Pacific, which in turn increases subsidence into the southeast Pacific through local anomalous Hadley circulation. The associated low-level easterly wind anomalies in the central equatorial Pacific are also reinforced by amplified upper-level divergence over the Maritime Continent to enhance the negative IPO, which is unfavorable for El Niño occurrence. Conversely, the negative AMO nearly cancels out the suppressing effect of the negative IPO on El Niño occurrence. During the positive IPO phase of the weakened atmospheric mean state, however, the AMO-induced interocean atmospheric teleconnections are much weaker; thus, neither the positive nor the negative AMO has any significant impact on El Niño occurrence.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dongmin Kim, dongmin.kim@noaa.gov

Abstract

We investigate the potential impacts of the interdecadal Pacific oscillation (IPO) and Atlantic multidecadal oscillation (AMO) on El Niño and the associated atmosphere and ocean dynamics by using the Community Earth System Model–Large Ensemble Simulation (CESM-LENS). The individual effects of IPO and AMO on El Niño frequency and the underlying atmosphere–ocean processes are well reproduced in CESM-LENS and agree with previous studies. However, the sensitivity of El Niño frequency to the AMO is robust mainly during the negative IPO phase and very weak during the positive IPO phase. Further analysis suggests that the atmospheric mean state in the Pacific is much amplified during the negative IPO phase, facilitating the AMO-induced interocean atmospheric teleconnections. More specifically, during the negative IPO phase of the amplified mean state, the positive AMO enhances ascending motion from the northeastern Pacific, which in turn increases subsidence into the southeast Pacific through local anomalous Hadley circulation. The associated low-level easterly wind anomalies in the central equatorial Pacific are also reinforced by amplified upper-level divergence over the Maritime Continent to enhance the negative IPO, which is unfavorable for El Niño occurrence. Conversely, the negative AMO nearly cancels out the suppressing effect of the negative IPO on El Niño occurrence. During the positive IPO phase of the weakened atmospheric mean state, however, the AMO-induced interocean atmospheric teleconnections are much weaker; thus, neither the positive nor the negative AMO has any significant impact on El Niño occurrence.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dongmin Kim, dongmin.kim@noaa.gov
Save