• Ackerley, D., and D. Dommenget, 2016: Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geosci. Model Dev., 9, 20772098, https://doi.org/10.5194/gmd-9-2077-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerley, D., R. Chadwick, D. Dommenget, and P. Petrelli, 2018: An ensemble of AMIP simulations with prescribed land surface temperatures. Geosci. Model Dev., 11, 38653881, https://doi.org/10.5194/gmd-11-3865-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anber, U., P. Gentine, S. Wang, and A. H. Sobel, 2015: Fog and rain in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 11 47311 477, https://doi.org/10.1073/pnas.1505077112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and P. D. Sardeshmukh, 2004: Dynamic stabilization of atmospheric single column models. J. Climate, 17, 10041021, https://doi.org/10.1175/1520-0442(2004)017<1004:DSOASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol., 78, 157175, https://doi.org/10.1007/S00704-004-0050-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Denvil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, https://doi.org/10.1038/ngeo1799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2016: Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Climate, 29, 90459061, https://doi.org/10.1175/JCLI-D-16-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, L., G. Bala, and K. Caldeira, 2012: Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett., 7, 034015, https://doi.org/10.1088/1748-9326/7/3/034015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., 2016: Which aspects of CO2 forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean? J. Climate, 29, 24932509, https://doi.org/10.1175/JCLI-D-15-0777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, T. Andrews, and G. Martin, 2014: Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett., 41, 610615, https://doi.org/10.1002/2013GL058504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., P. Good, and K. Willett, 2016: A simple moisture advection model of specific humidity change over land in response to SST warming. J. Climate, 29, 76137632, https://doi.org/10.1175/JCLI-D-16-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., H. Douville, and C. B. Skinner, 2017: Timeslice experiments for understanding regional climate projections: Applications to the tropical hydrological cycle and European winter circulation. Climate Dyn., 49, 30113029, https://doi.org/10.1007/S00382-016-3488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., D. Ackerley, T. Ogura, and D. Dommenget, 2019: Separating the influences of land warming, the direct CO2 effect, the plant physiological effect, and SST warming on regional precipitation changes. J. Geophys. Res. Atmos., 124, 624640, https://doi.org/10.1029/2018JD029423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., S. E. Zebiak, and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci., 58, 13711394, https://doi.org/10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, https://doi.org/10.1175/2008JCLI2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203, https://doi.org/10.1007/S003820050276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., and Coauthors, 2015: Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions. J. Adv. Model. Earth Syst., 7, 15761601, https://doi.org/10.1002/2015MS000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diakhaté, M., A. Lazar, G. Coëtlogon, and A. T. Gaye, 2018: Do SST gradients drive the monthly climatological surface wind convergence over the tropical Atlantic? Int. J. Climatol., 38 (S1), e955e965, https://doi.org/10.1002/joc.5422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 30793097, https://doi.org/10.1175/2009JCLI2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., 2012: A mechanism for land–ocean contrasts in global monsoon trends in a warming climate. Climate Dyn., 39, 11371147, https://doi.org/10.1007/S00382-011-1270-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., 2010: Mechanisms of climate change in the semiarid African Sahel: The local view. J. Climate, 23, 743756, https://doi.org/10.1175/2009JCLI3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and B. J. Soden, 2015: Anthropogenic weakening of the tropical circulation: The relative roles of direct CO2 forcing and sea surface temperature change. J. Climate, 28, 87288742, https://doi.org/10.1175/JCLI-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., B. J. Soden, and B. Kirtman, 2014: The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett., 41, 26142622, https://doi.org/10.1002/2014GL059435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, https://doi.org/10.1007/s00382-007-0306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, C., R. Chadwick, and D. P. Rowell, 2015: Understanding uncertainties in future projections of seasonal tropical precipitation. J. Climate, 28, 43904413, https://doi.org/10.1175/JCLI-D-14-00613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: Modeling the interaction between cumulus convection and linear gravity waves using a limited-domain cloud system–resolving model. J. Atmos. Sci., 65, 576591, https://doi.org/10.1175/2007JAS2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2011: The wavelength dependence of the gross moist stability and the scale selection in the instability of column-integrated moist static energy. J. Atmos. Sci., 68, 6174, https://doi.org/10.1175/2010JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., M. J. Webb, and M. M. Joshi, 2011: The relationship between land–ocean surface temperature contrast and radiative forcing. J. Climate, 24, 32393256, https://doi.org/10.1175/2011JCLI3893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., A. J. Ferraro, and R. Chadwick, 2017: Land–ocean shifts in tropical precipitation linked to surface temperature and humidity change. J. Climate, 30, 45274545, https://doi.org/10.1175/JCLI-D-16-0649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, B. N., and Coauthors, 2013: Storing and manipulating environmental big data with JASMIN. Proc. 2013 IEEE Int. Conf. on Big Data, Silicon Valley, CA, IEEE Big Data, 68–75, https://doi.org/10.1109/BigData.2013.6691556.

    • Crossref
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, S.-M., S.-P. Xie, and W. Liu, 2016: Uncertainty in tropical rainfall projections: Atmospheric circulation effect and the ocean coupling. J. Climate, 29, 26712687, https://doi.org/10.1175/JCLI-D-15-0601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, https://doi.org/10.1175/JCLI-D-12-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, https://doi.org/10.1175/JCLI-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, https://doi.org/10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, https://doi.org/10.1073/pnas.1508268112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oueslati, B., S. Bony, C. Risi, and J.-L. Dufresne, 2016: Interpreting the inter-model spread in regional precipitation projections in the tropics: Role of surface evaporation and cloud radiative effects. Climate Dyn., 47, 28012815, https://doi.org/10.1007/s00382-016-2998-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saint-Lu, M., R. Chadwick, F. H. Lambert, and M. Collins, 2019: Surface warming and atmospheric circulation dominate rainfall changes over tropical rainforests under global warming. Geophys. Res. Lett., 46, 13 41013 419, https://doi.org/10.1029/2019GL085295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406, https://doi.org/10.1126/science.271.5254.1402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and G. Bellon, 2009: The effect of imposed drying on parameterized deep convection. J. Atmos. Sci., 66, 20852096, https://doi.org/10.1175/2008JAS2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., G. Bellon, and J. Bacmeister, 2007: Multiple equilibria in a single-column model of the tropical atmosphere. Geophys. Res. Lett., 34, L22804, https://doi.org/10.1029/2007GL031320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, A., M. Collins, F. H. Lambert, and R. Chadwick, 2018: Diagnosing ENSO and global warming tropical precipitation shifts using surface relative humidity and temperature. J. Climate, 31, 14131433, https://doi.org/10.1175/JCLI-D-17-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 19091963, https://doi.org/10.5194/gmd-12-1909-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and Z. Kuang, 2013: Cloud-resolving simulation of TOGA-COARE using parameterized large-scale dynamics. J. Geophys. Res. Atmos., 118, 62906301, https://doi.org/10.1002/JGRD.50510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, H., and A. H. Sobel, 2012: Comparison of a single-column model in weak temperature gradient mode to its parent AGCM. Quart. J. Roy. Meteor. Soc., 138, 10251034, https://doi.org/10.1002/qj.967.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 34 34 20
Full Text Views 10 10 9
PDF Downloads 14 14 13

Influences of Local and Remote Conditions on Tropical Precipitation and Its Response to Climate Change

View More View Less
  • 1 University of Exeter, Exeter, United Kingdom
  • 2 Met Office Hadley Centre, and Global Systems Institute, University of Exeter, Exeter, United Kingdom
  • 3 University of Exeter, Exeter, United Kingdom
  • 4 Met Office, Exeter, United Kingdom
  • 5 University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

By comparing a single-column model (SCM) with closely related general circulation models (GCMs), precipitation changes that can be diagnosed from local changes in surface temperature (TS) and relative humidity (RHS) are separated from more complex responses. In the SCM setup, the large-scale tropical circulation is parameterized to respond to the surface temperature departure from a prescribed environment, following the weak temperature gradient (WTG) approximation and using the damped gravity wave (DGW) parameterization. The SCM is also forced with moisture variations. First, it is found that most of the present-day mean tropical rainfall and circulation pattern is associated with TS and RHS patterns. Climate change experiments with the SCM are performed, imposing separately surface warming and CO2 increase. The rainfall responses to future changes in sea surface temperature patterns and plant physiology are successfully reproduced, suggesting that these are direct responses to local changes in convective instability. However, the SCM increases oceanic rainfall too much, and fails to reproduce the land rainfall decrease, both of which are associated with uniform ocean warming. It is argued that remote atmospheric teleconnections play a crucial role in both weakening the atmospheric overturning circulation and constraining precipitation changes. Results suggest that the overturning circulation weakens, both as a direct local response to increased CO2 and in response to energy-imbalance driven exchanges between ascent and descent regions.

Current affiliation: Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Sorbonne Université, Université Pierre et Marie Curie, Paris, France.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0450.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marion Saint-Lu, marion.saint-lu@lmd.jussieu.fr

Abstract

By comparing a single-column model (SCM) with closely related general circulation models (GCMs), precipitation changes that can be diagnosed from local changes in surface temperature (TS) and relative humidity (RHS) are separated from more complex responses. In the SCM setup, the large-scale tropical circulation is parameterized to respond to the surface temperature departure from a prescribed environment, following the weak temperature gradient (WTG) approximation and using the damped gravity wave (DGW) parameterization. The SCM is also forced with moisture variations. First, it is found that most of the present-day mean tropical rainfall and circulation pattern is associated with TS and RHS patterns. Climate change experiments with the SCM are performed, imposing separately surface warming and CO2 increase. The rainfall responses to future changes in sea surface temperature patterns and plant physiology are successfully reproduced, suggesting that these are direct responses to local changes in convective instability. However, the SCM increases oceanic rainfall too much, and fails to reproduce the land rainfall decrease, both of which are associated with uniform ocean warming. It is argued that remote atmospheric teleconnections play a crucial role in both weakening the atmospheric overturning circulation and constraining precipitation changes. Results suggest that the overturning circulation weakens, both as a direct local response to increased CO2 and in response to energy-imbalance driven exchanges between ascent and descent regions.

Current affiliation: Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Sorbonne Université, Université Pierre et Marie Curie, Paris, France.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0450.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marion Saint-Lu, marion.saint-lu@lmd.jussieu.fr

Supplementary Materials

    • Supplemental Materials (PDF 8.04 MB)
Save