• Akahori, K., and S. Yoden, 1997: Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sci., 54, 23492361, https://doi.org/10.1175/1520-0469(1997)054<2349:ZFVABO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J., S. Michelson, P. Neiman, F. Ralph, and J. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, https://doi.org/10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brands, S., J. M. Gutiérrez, and D. San-Martín, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: Algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dyn., 48, 27712795, https://doi.org/10.1007/s00382-016-3095-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debbage, N., P. Miller, S. Poore, K. Morano, T. Mote, and J. M. Shepherd, 2017: A climatology of atmospheric river interactions with the southeastern United States coastline. Int. J. Climatol., 37, 40774091, https://doi.org/10.1002/joc.5000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, https://doi.org/10.1175/JHM-D-13-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eiras-Barca, J., F. Dominguez, H. Hu, D. Garaboa-Paz, and G. Miguez-Macho, 2017: Evaluation of the moisture sources in two extreme landfalling atmospheric river events using an Eulerian WRF tracers tool. Earth Syst. Dyn., 8, 12471261, https://doi.org/10.5194/esd-8-1247-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fragoso, M., R. M. Trigo, J. L. Zêzere, and M. A. Valente, 2010: The exceptional rainfall event in Lisbon on 18 February 2008. Weather, 65, 3135, https://doi.org/10.1002/wea.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., T. Woollings, and O. Martius, 2011: Persistent circulation regimes and preferred regime transitions in the North Atlantic. J. Atmos. Sci., 68, 28092825, https://doi.org/10.1175/JAS-D-11-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, A., and D. Peters, 2008: A diagnostic study of different types of Rossby wave breaking events in the northern extratropics. J. Meteor. Soc. Japan, 86, 613631, https://doi.org/10.2151/jmsj.86.613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómara, I., J. G. Pinto, T. Woollings, G. Masato, P. Zurita-Gotor, and B. Rodríguez-Fonseca, 2014: Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector. Quart. J. Roy. Meteor. Soc., 140, 738753, https://doi.org/10.1002/qj.2190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R., J. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, https://doi.org/10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, H., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, and F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking. J. Climate, 30, 33813399, https://doi.org/10.1175/JCLI-D-16-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–36.

    • Crossref
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, https://doi.org/10.1175/2009JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, https://doi.org/10.1175/JCLI-D-12-00401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, https://doi.org/10.1002/grl.50636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382390, https://doi.org/10.1016/j.jhydrol.2014.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, G. Villarini, B. Lloyd-Hughes, D. J. Brayshaw, and A. J. Wade, 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, https://doi.org/10.1088/1748-9326/8/3/034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liberato, M. L., A. M. Ramos, R. M. Trigo, I. F. Trigo, A. M. Durán-Quesada, R. Nieto, and L. Gimeno, 2012: Moisture sources and large-scale dynamics associated with a flash flood event. Lagrangian Modeling of the Atmosphere, Geophys. Monogr., Vol. 200, Amer. Geophys. Union, 111–126.

    • Crossref
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Ren, and X. Yang, 2014: Mean flow-storm track relationship and Rossby wave breaking in two types of El-Niño. Adv. Atmos. Sci., 31, 197210, https://doi.org/10.1007/s00376-013-2297-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M., and T. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, https://doi.org/10.1038/305593a0.

  • McIntyre, M., and T. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46, 825849, https://doi.org/10.1016/0021-9169(84)90063-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, C., G. Rivière, L. Terray, and B. Joly, 2012: The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys. Res. Lett., 39, L10806, https://doi.org/10.1029/2012GL051682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016a: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and K. M. Nardi, 2016b: Modulation of atmospheric rivers near Alaska and the U.S. West Coast by northeast Pacific height anomalies. J. Geophys. Res. Atmos, 121, 12 75112 765, https://doi.org/10.1002/2016JD025350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 71337150, https://doi.org/10.1175/JCLI-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D., and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air. J. Atmos. Sci., 53, 30133031, https://doi.org/10.1175/1520-0469(1996)053<3013:IOBSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. Dettinger, 2011: Storms, floods, and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, https://doi.org/10.1029/2011EO320001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. M. Trigo, M. L. Liberato, and R. Tomé, 2015: Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor., 16, 579597, https://doi.org/10.1175/JHM-D-14-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. Nieto, R. Tomé, L. Gimeno, R. M. Trigo, M. L. Liberato, and D. A. Lavers, 2016: Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dyn., 7, 371384, https://doi.org/10.5194/esd-7-371-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., V. F. Banzon, and N. C. Program, 2008: NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) analysis, version 2. NOAA National Climatic Data Center, accessed 20 May 2019, https://doi.org/10.7289/V5SQ8XB5.

    • Crossref
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. West Coast winter precipitation during ENSO events. J. Climate, 26, 63606382, https://doi.org/10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., D. E. Waliser, D. W. Waugh, S. Wong, E. J. Fetzer, and I. Fung, 2015: Classification of atmospheric river events on the U.S. West Coast using a trajectory model. J. Geophys. Res. Atmos., 120, 30073028, https://doi.org/10.1002/2014JD022023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, https://doi.org/10.1175/MWR-D-12-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., B. Hoskins, and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., F. Varino, A. M. Ramos, M. A. Valente, J. L. Zêzere, J. M. Vaquero, C. M. Gouveia, and A. Russo, 2014: The record precipitation and flood event in Iberia in December 1876: Description and synoptic analysis. Front. Earth Sci., 2, 3, https://doi.org/10.3389/FEART.2014.00003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, https://doi.org/10.1175/MWR-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2015: Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavadoff, B. L., and B. P. Kirtman, 2019: North Atlantic summertime anticyclonic Rossby wave breaking: Climatology, impacts, and connections to the Pacific decadal oscillation. J. Climate, 32, 485500, https://doi.org/10.1175/JCLI-D-18-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 25 25 17
Full Text Views 10 10 4
PDF Downloads 16 16 6

Dynamic and Thermodynamic Modulators of European Atmospheric Rivers

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

Large-scale analysis of the dynamic and thermodynamic properties of landfalling atmospheric rivers (ARs) over western Europe is performed utilizing 38 years of the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis dataset. A climatology of landfalling ARs from 1980 to 2017 is developed using a combination of integrated water vapor transport (IVT) calculations and a detection algorithm, which identified 578 ARs over the study period. Examination of the upper-level potential vorticity (PV) fields shows that 73% of these AR events are related to anticyclonic Rossby wave breaking (RWB), a dynamic feature which has been shown to play a role in AR strength and structure. Atmospheric river variability is also found to be closely tied to jet-stream latitude modulation by the North Atlantic Oscillation (NAO), such that during a positive NAO the North Atlantic jet is shifted north, creating an environment that is more favorable for anticyclonic RWB and AR landfalls over northern Europe, and during a negative NAO it is shifted south, creating such an environment over southern Europe.Through the use of linear regression analysis, AR strength is shown to be dependent on atmospheric moisture availability, which is found to increase as sea surface temperatures (SSTs) increase. Therefore, in a warming climate warmer SSTs leading to higher atmospheric moisture availability will result in an increase in the average strength and intensity of ARs over western Europe—a trend that has already been observed.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Breanna L. Zavadoff, bzavadoff@rsmas.miami.edu

Abstract

Large-scale analysis of the dynamic and thermodynamic properties of landfalling atmospheric rivers (ARs) over western Europe is performed utilizing 38 years of the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis dataset. A climatology of landfalling ARs from 1980 to 2017 is developed using a combination of integrated water vapor transport (IVT) calculations and a detection algorithm, which identified 578 ARs over the study period. Examination of the upper-level potential vorticity (PV) fields shows that 73% of these AR events are related to anticyclonic Rossby wave breaking (RWB), a dynamic feature which has been shown to play a role in AR strength and structure. Atmospheric river variability is also found to be closely tied to jet-stream latitude modulation by the North Atlantic Oscillation (NAO), such that during a positive NAO the North Atlantic jet is shifted north, creating an environment that is more favorable for anticyclonic RWB and AR landfalls over northern Europe, and during a negative NAO it is shifted south, creating such an environment over southern Europe.Through the use of linear regression analysis, AR strength is shown to be dependent on atmospheric moisture availability, which is found to increase as sea surface temperatures (SSTs) increase. Therefore, in a warming climate warmer SSTs leading to higher atmospheric moisture availability will result in an increase in the average strength and intensity of ARs over western Europe—a trend that has already been observed.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Breanna L. Zavadoff, bzavadoff@rsmas.miami.edu
Save