• Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., 2013: Climatology and recent increase of westerly winds over the Amundsen Sea derived from six reanalyses. Int. J. Climatol., 33, 843851, https://doi.org/10.1002/joc.3473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, https://doi.org/10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, I., and Coauthors, 2013: Influence of persistent wind scour on the surface mass balance of Antarctica. Nat. Geosci., 6, 367371, https://doi.org/10.1038/ngeo1766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., J. B. Madeleine, H. Gallée, R. M. Forbes, C. Genthon, G. Krinner, and A. Berne, 2017: Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance. Proc. Natl. Acad. Sci. USA, 114, 10 85810 863, https://doi.org/10.1073/pnas.1707633114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2019: Are the near-Antarctic easterly winds weakening in response to enhancement of the southern annular mode? J. Climate, 32, 18951918, https://doi.org/10.1175/JCLI-D-18-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennermann, K., and A. Guillory, 2019: What are the changes from ERA-Interim to ERA5? ECMWF, https://confluence.ecmwf.int/pages/viewpage.action?pageId=74764925.

  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Huai, B., Y. Wang, M. Ding, J. Zhang, and X. Dong, 2019: An assessment of recent global atmospheric reanalyses for Antarctic near surface air temperature. Atmos. Res., 226, 181191, https://doi.org/10.1016/j.atmosres.2019.04.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, R. W., I. A. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and M. A. Lazzara, 2016: Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Atmos., 121, 62406257, https://doi.org/10.1002/2015JD024680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. C., and J. Turner, 2007: Antarctic Meteorology and Climatology. Cambridge University Press, 424 pp.

  • King, J. C., and Coauthors, 2017: The impact of föhn winds on surface energy balance during the 2010–2011 melt season over Larsen C Ice Shelf, Antarctica. J. Geophys. Res. Atmos., 122, 12 06212 076, https://doi.org/10.1002/2017JD026809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic automatic weather station program: 30 years of polar observations. Bull. Amer. Meteor. Soc., 93, 15191537, https://doi.org/10.1175/BAMS-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., and Coauthors, 2017: Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Climate Change, 7, 5862, https://doi.org/10.1038/nclimate3180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. S., M. Fujiwara, S. Davis, D. M. Mitchell, and C. J. Wright, 2017: Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP). Atmos. Chem. Phys., 17, 14 59314 629, https://doi.org/10.5194/acp-17-14593-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A. M., L. L. Takacs, M. J. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., and Coauthors, 2016: Validation of eight atmospheric reanalyses in the Antarctic Peninsula region. Quart. J. Roy. Meteor. Soc., 142, 684692, https://doi.org/10.1002/qj.2691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and J. J. Cassano, 2003: The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317333, https://doi.org/10.1175/1520-0493(2003)131<0317:TROKWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 2007: Re-examination of the near-surface air flow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon. Wea. Rev., 135, 19611973, https://doi.org/10.1175/MWR3374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Périard, C., and P. Pettré, 1993: Some aspects of the climatology of Dumont D’Irville, Adélie Land, Antarctica. Int. J. Climatol., 13, 313328. https://doi.org/10.1002/joc.3370130307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, https://doi.org/10.1029/2008JD011416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigo, J. S., J.-M. Buchlin, J. van Beeck, J. T. M. Lenaerts, and M. R. van den Broeke, 2013: Evaluation of the Antarctic surface wind climate from ERA reanalyses and RACMO2/ANT simulations based on automatic weather stations. Climate Dyn., 40, 353376, https://doi.org/10.1007/s00382-012-1396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanz Rodrigo, J., 2011: On Antarctic wind engineering. Ph.D. thesis, Université Libre de Bruxelles, 218 pp.

  • Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula–Ellsworth Land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2004: The SCAR READER Project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 28902898, https://doi.org/10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., S. N. Chenoli, A. Abu Samah, G. Marshall, T. Phillips, and A. Orr, 2009: Strong wind events in the Antarctic. J. Geophys. Res., 114, D18103, https://doi.org/10.1029/2008JD011642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turton, J. V., A. Kirchgaessner, A. N. Ross, and J. C. King, 2018: The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica. Quart. J. Roy. Meteor. Soc., 144, 11691178, https://doi.org/10.1002/qj.3284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733743, https://doi.org/10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2016: A comparison of Antarctic Ice Sheet surface mass balance from atmospheric climate models and in situ observations. J. Climate, 29, 53175337, https://doi.org/10.1175/JCLI-D-15-0642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., and S. Kodama, 1993: Intraseasonal variability of katabatic wind over East Antarctica and planetary flow regime in the Southern Hemisphere. J. Geophys. Res., 98, 13 06313 070, https://doi.org/10.1029/92JD02084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L. J., and S. Y. Zhong, 2019: Strong wind speed events over Antarctica and its surrounding oceans. J. Climate, 32, 34513470, https://doi.org/10.1175/JCLI-D-18-0831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Wang, B. Huai, M. Ding, and W. Sun, 2018: Skill of the two 20th century reanalyses in representing Antarctic near-surface air temperature. Int. J. Climatol., 38, 42254238, https://doi.org/10.1002/joc.5563.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 127 127 97
Full Text Views 20 20 15
PDF Downloads 17 17 13

Robustness of the Recent Global Atmospheric Reanalyses for Antarctic Near-Surface Wind Speed Climatology

View More View Less
  • 1 College of Geography and Environment, Shandong Normal University, Jinan, China
  • 2 Ministry of Education, Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
  • 3 Institute of Tibetan Plateau and Polar Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China
  • 4 College of Geography and Environment, Shandong Normal University, Jinan, China
  • 5 Ministry of Education, Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

Near-surface wind speed observations from 30 manned meteorological stations and 26 automatic weather stations over the Antarctic Ice Sheet are used to examine the robustness of wind speed climatology in six recent global reanalysis products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), the Japan Meteorological Agency 55-Year Reanalysis (JRA-55), the Climate Forecast System Reanalysis (CFSR), the National Centers for Environmental Prediction–U.S. Department of Energy (DOE) Reanalysis 2 (NCEP2), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and fifth-generation reanalysis (ERA5). Their skills for representing near-surface wind speeds vary by season, with better performance in summer than in winter. At the regional scale, all reanalysis datasets perform more poorly for the magnitude, but better for their year-to-year changes in wind regimes in the escarpment than the coastal and plateau regions. By comparison, ERA5 has the best performance for the monthly averaged wind speed magnitude and the interannual variability of the near-surface wind speed from 1979 onward. Intercomparison exhibits high and significant correlations for annual and seasonal wind speed Antarctic-wide averages from different datasets during their overlapping timespans (1980–2018), despite some regional disagreements between the different reanalyses. Furthermore, all of the reanalyses show positive trends of the annual and summer wind speeds for the 1980–2018 period, which are linked with positive polarity of the southern annular mode.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0648.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yetang Wang, yetangwang@sdnu.edu.cn

Abstract

Near-surface wind speed observations from 30 manned meteorological stations and 26 automatic weather stations over the Antarctic Ice Sheet are used to examine the robustness of wind speed climatology in six recent global reanalysis products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), the Japan Meteorological Agency 55-Year Reanalysis (JRA-55), the Climate Forecast System Reanalysis (CFSR), the National Centers for Environmental Prediction–U.S. Department of Energy (DOE) Reanalysis 2 (NCEP2), and the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and fifth-generation reanalysis (ERA5). Their skills for representing near-surface wind speeds vary by season, with better performance in summer than in winter. At the regional scale, all reanalysis datasets perform more poorly for the magnitude, but better for their year-to-year changes in wind regimes in the escarpment than the coastal and plateau regions. By comparison, ERA5 has the best performance for the monthly averaged wind speed magnitude and the interannual variability of the near-surface wind speed from 1979 onward. Intercomparison exhibits high and significant correlations for annual and seasonal wind speed Antarctic-wide averages from different datasets during their overlapping timespans (1980–2018), despite some regional disagreements between the different reanalyses. Furthermore, all of the reanalyses show positive trends of the annual and summer wind speeds for the 1980–2018 period, which are linked with positive polarity of the southern annular mode.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0648.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yetang Wang, yetangwang@sdnu.edu.cn
Save