• Atkinson, G., and C. Holliday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Wea. Rev., 105, 421427, https://doi.org/10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S., M. Tippett, A. Sobel, G. Vecchi, and M. Zhao, 2014: Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. J. Climate, 27, 91719196, https://doi.org/10.1175/JCLI-D-13-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chauvin, F., J.-F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377399, https://doi.org/10.1007/s00382-006-0135-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chauvin, F., R. Pilon, P. Palany, and A. BelMadani, 2020: Future changes in Atlantic hurricanes with the rotated-stretched ARPEGE-Climat at very high resolution. Climate Dyn., 54, 947972, https://doi.org/10.1007/s00382-019-05040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., F. Chauvin, and F. Roux, 2012: Impact of the configuration of stretching and ocean–atmosphere coupling on tropical cyclone activity in the variable-resolution GCM ARPEGE. Climate Dyn., 39, 23432359, https://doi.org/10.1007/s00382-012-1561-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J.-P., 2015: Initiation and intensification of tropical depressions over the southern Indian Ocean: Influence of the MJO. Mon. Wea. Rev., 143, 21702191, https://doi.org/10.1175/MWR-D-14-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. Nolan, 2004: Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • Gray, W. M., 1975: Tropical cyclone genesis. Atmospheric Science Paper 234, Colorado State University, 121 pp.

  • Haarsma, R., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I., and M. Zhao, 2011: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Climate, 24, 53535364, https://doi.org/10.1175/JCLI-D-11-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series 27, 65 pp, https://doi.org/10.21957/tkic6g3wm.

    • Crossref
    • Export Citation
  • Holland, G., and C. Bruyère, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617627, https://doi.org/10.1007/s00382-013-1713-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K., M. Kruk, D. Levinson, H. Diamond, and C. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Knutson, T., J. Sirutis, M. Zhao, R. Tuleya, M. Bender, G. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, https://doi.org/10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

  • Kossin, J., T. Olander, and K. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, https://doi.org/10.1175/JCLI-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., R. Fawcett, L. Qi, B. Trewin, D. Jones, J. McBride, and H. Ramsay, 2010: Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. J. Geophys. Res., 115, D01101, https://doi.org/10.1029/2009JD012372.

    • Search Google Scholar
    • Export Citation
  • Malan, N., C. Reason, and B. Loveday, 2013: Variability in tropical cyclone heat potential over the Southwest Indian Ocean. J. Geophys. Res. Oceans, 118, 67346746, https://doi.org/10.1002/2013JC008958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C., M. Lengaigne, P. Marchesiello, N. Jourdain, E. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301321, https://doi.org/10.1007/s00382-011-1126-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, https://doi.org/10.1175/JCLI-D-11-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, M., B. Fu, T. Li, and D. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Wea. Rev., 140, 10471066, https://doi.org/10.1175/2011MWR3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., and F. Chauvin, 2009: Response of tropical cyclogenesis to global warming in an IPCC AR4 scenario. Hurricanes and Climate Change, J. Elsner and T. Jagger, Eds., Springer, 213–234, https://doi.org/10.1007/978-0-387-09410-6_12.

    • Crossref
    • Export Citation
  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343, https://doi.org/10.1023/A:1005386312622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugi, M., H. Murakami, and J. Yoshimura, 2012: On the mechanism of tropical cyclone frequency changes due to global warming. J. Meteor. Soc. Japan, 90A, 397408, https://doi.org/10.2151/JMSJ.2012-A24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2011: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M., S. Camargo, and A. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, https://doi.org/10.1175/2010JCLI3811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5. 1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, https://doi.org/10.1002/WCC.371.

    • Search Google Scholar
    • Export Citation
  • Wehner, M., Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. Bacmeister, 2015: Resolution dependence of future tropical cyclone projections of CAM5.1 in the U.S. CLIVAR Hurricane working group idealized configurations. J. Climate, 28, 39053925, https://doi.org/10.1175/JCLI-D-14-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodruff, J., J. Irish, and S. Camargo, 2013: Coastal flooding by tropical cyclones and sea-level rise. Nature, 504, 4452, https://doi.org/10.1038/nature12855.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 74 74 34
Full Text Views 13 13 8
PDF Downloads 13 13 9

Projected Changes in the Southern Indian Ocean Cyclone Activity Assessed from High-Resolution Experiments and CMIP5 Models

View More View Less
  • 1 Centre National de Recherches Météorologiques, Université de Toulouse, CNRS, Météo-France, Toulouse, France
  • 2 Laboratoire de l’Atmosphère et des Cyclones, Université de la Réunion, CNRS, Météo-France, Saint-Denis, France
© Get Permissions
Restricted access

Abstract

The evolution of tropical cyclone activity under climate change remains a crucial scientific issue. Physical theory of cyclogenesis is limited, observational datasets suffer from heterogeneities in space and time, and state-of-the-art climate models used for future projections are still too coarse (~100 km of resolution) to simulate realistic systems. Two approaches can nevertheless be considered: 1) perform dedicated high-resolution (typically <50 km) experiments in which tropical cyclones can be tracked and 2) assess cyclone activity from existing low-resolution multimodel climate projections using large-scale indices as proxies. Here we explore these two approaches with a particular focus on the southern Indian Ocean. We first compute high-resolution experiments using the rotated-stretched configuration of our climate model (CNRM-CM6-1), which is able to simulate realistic tropical cyclones. In a 2-K warmer world, the model projects a 20% decrease in the frequency of tropical cyclones, together with an increase in their maximum lifetime intensity, a slight poleward shift of their trajectories, and a substantial delay (about 1 month) in the cyclone season onset. Large-scale indices applied to these high-resolution experiments fail to capture the overall decrease in cyclone frequency, but are able to partially represent projected changes in the spatiotemporal distribution of cyclone activity. Last, we apply large-scale indices to multimodel CMIP5 projections and find that the seasonal redistribution of cyclone activity is consistent across models.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julien Cattiaux, julien.cattiaux@meteo.fr

Abstract

The evolution of tropical cyclone activity under climate change remains a crucial scientific issue. Physical theory of cyclogenesis is limited, observational datasets suffer from heterogeneities in space and time, and state-of-the-art climate models used for future projections are still too coarse (~100 km of resolution) to simulate realistic systems. Two approaches can nevertheless be considered: 1) perform dedicated high-resolution (typically <50 km) experiments in which tropical cyclones can be tracked and 2) assess cyclone activity from existing low-resolution multimodel climate projections using large-scale indices as proxies. Here we explore these two approaches with a particular focus on the southern Indian Ocean. We first compute high-resolution experiments using the rotated-stretched configuration of our climate model (CNRM-CM6-1), which is able to simulate realistic tropical cyclones. In a 2-K warmer world, the model projects a 20% decrease in the frequency of tropical cyclones, together with an increase in their maximum lifetime intensity, a slight poleward shift of their trajectories, and a substantial delay (about 1 month) in the cyclone season onset. Large-scale indices applied to these high-resolution experiments fail to capture the overall decrease in cyclone frequency, but are able to partially represent projected changes in the spatiotemporal distribution of cyclone activity. Last, we apply large-scale indices to multimodel CMIP5 projections and find that the seasonal redistribution of cyclone activity is consistent across models.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julien Cattiaux, julien.cattiaux@meteo.fr
Save