• Anderson, D. L., and A. E. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res. Oceanogr. Abstr., 22, 583596, https://doi.org/10.1016/0011-7471(75)90046-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, M., Y. O. Kwon, and J. Yang, 2011: Observations of the Kuroshio’s barotropic and baroclinic responses to basin-wide wind forcing. J. Geophys. Res., 116, C04011, https://doi.org/10.1029/2010JC006863.

    • Search Google Scholar
    • Export Citation
  • Babcock, R. C., and Coauthors, 2019: Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci., 6, 411, https://doi.org/10.3389/fmars.2019.00411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrens, E., D. Fernandez, and P. Sutton, 2019: Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales. Front. Mar. Sci., 6, 228, https://doi.org/10.3389/fmars.2019.00228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., M. Feng, and L. Zhong, 2014: Spatial patterns of warming off western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res., 91, 232246, https://doi.org/10.1016/j.csr.2014.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, M., J. Markham, P. Sutton, X. Zhang, Q. Wu, N. T. Shears, and D. Fernandez, 2017: Interannual variability of sea surface temperature in the southwest Pacific and the role of ocean dynamics. J. Climate, 30, 74817492, https://doi.org/10.1175/JCLI-D-16-0852.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bull, C. Y., A. E. Kiss, N. C. Jourdain, M. H. England, and E. van Sebille, 2017: Wind forced variability in eddy formation, eddy shedding, and the separation of the East Australian current. J. Geophys. Res. Oceans, 122, 99809998, https://doi.org/10.1002/2017JC013311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bull, C. Y., A. E. Kiss, E. van Sebille, N. C. Jourdain, and M. H. England, 2018: The role of the New Zealand plateau in the Tasman Sea circulation and separation of the East Australian Current. J. Geophys. Res. Oceans, 123, 14571470, https://doi.org/10.1002/2017JC013412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavole, L. M., and Coauthors, 2016: Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, losers, and the future. Oceanography, 29, 273285, https://doi.org/10.5670/oceanog.2016.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceballos, L. I., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22, 51635174, https://doi.org/10.1175/2009JCLI2848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, https://doi.org/10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 16971706, https://doi.org/10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, D., M. Bowen, and P. Sutton, 2018: Variability, coherence and forcing mechanisms in the New Zealand ocean boundary currents. Prog. Oceanogr., 165, 168188, https://doi.org/10.1016/j.pocean.2018.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and Coauthors, 2014: The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE). J. Geophys. Res. Oceans, 119, 76607686, https://doi.org/10.1002/2013JC009678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gramenz, E., 2016: Tasmanian salmon: Hope falling water temperatures will help local farmers. Australian Broadcasting Corporation, accessed 3 May 2016, http://www.abc.net.au/news/ 2016-04-08/cooler-waters-signal-relief-for-tas-salmon-producers/7310944.

  • Hill, K., S. Rintoul, P. Oke, and K. Ridgway, 2010: Rapid response of the East Australian Current to remote wind forcing: The role of barotropic–baroclinic interactions. J. Mar. Res., 68, 413431, https://doi.org/10.1357/002224010794657218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227238, https://doi.org/10.1016/j.pocean.2015.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., and N. L. Bindoff, 1999: Seasonal temperature variability in the upper southwest Pacific Ocean. J. Phys. Oceanogr., 29, 366381, https://doi.org/10.1175/1520-0485(1999)029<0366:STVITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., I. D. Goodwin, S. McGregor, E. Molina, and S. B. Power, 2011: ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep-Sea Res. II, 58, 547558, https://doi.org/10.1016/j.dsr2.2010.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, T. P., and Coauthors, 2018: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359, 8083, https://doi.org/10.1126/science.aan8048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-B., T. Lee, and I. Fukumori, 2007: Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 38223843, https://doi.org/10.1175/JCLI4206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 19361944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., L. Wu, and H. Hurlburt, 1999: Rossby wave–coastal Kelvin wave interaction in the extratropics. Part II: Formation of island circulation. J. Phys. Oceanogr., 29, 24052418, https://doi.org/10.1175/1520-0485(1999)029<2405:RWCKWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maharaj, A. M., P. Cipollini, and N. J. Holbrook, 2005: Observed variability of the South Pacific westward sea level anomaly signal in the presence of bottom topography. Geophys. Res. Lett., 32, L04611, https://doi.org/10.1029/2004GL020966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2013: Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Modell., 67, 5270, https://doi.org/10.1016/j.ocemod.2013.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., 2019: Mean warming not variability drives marine heatwave trends. Climate Dyn., 53, 16531659, https://doi.org/10.1007/s00382-019-04707-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., T. J. O’Kane, and N. J. Holbrook, 2015: Projected changes to Tasman Sea eddies in a future climate. J. Geophys. Res. Oceans, 120, 71507165, https://doi.org/10.1002/2015JC010993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., J. A. Benthuysen, N. L. Bindoff, A. J. Hobday, N. J. Holbrook, C. N. Mundy, and S. E. Perkins-Kirkpatrick, 2017: The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun., 8, 16101, https://doi.org/10.1038/ncomms16101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

    • Crossref
    • Export Citation
  • Perkins, M. L., and N. J. Holbrook, 2001: Can Pacific Ocean thermocline depth anomalies be simulated by a simple linear vorticity model? J. Phys. Oceanogr., 31, 17861806, https://doi.org/10.1175/1520-0485(2001)031<1786:CPOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32, 353375, https://doi.org/10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36, 17511762, https://doi.org/10.1175/JPO2943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 25252538, https://doi.org/10.1175/2010JPO4462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., N. Schneider, and S. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 36023620, https://doi.org/10.1175/JCLI4190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, N. Schneider, T. Kagimoto, M. Nonaka, and H. Sasaki, 2008: Decadal sea level variability in the South Pacific in a global eddy-resolving ocean model hindcast. J. Phys. Oceanogr., 38, 17311747, https://doi.org/10.1175/2007JPO3915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smale, D. A., and Coauthors, 2019: Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Climate Change, 9, 306312, https://doi.org/10.1038/s41558-019-0412-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturges, W., and B. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25, 17061715, https://doi.org/10.1175/1520-0485(1995)025<1706:WFOTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, K., and M. Ikeda, 2004: Propagation of Rossby waves over ridges excited by interannual wind forcing in a western North Pacific model. J. Oceanogr., 60, 329340, https://doi.org/10.1023/B:JOCE.0000038339.21509.83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. Thompson, 1999: Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J. Geophys. Res., 104, 20 76720 788, https://doi.org/10.1029/1999JC900096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. J. McPhaden, 2010: Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: Influence of local versus remote wind forcing. J. Climate, 23, 43754394, https://doi.org/10.1175/2010JCLI3469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., B. Cornuelle, and D. Roemmich, 2012: Sensitivity of western boundary transport at the mean North Equatorial Current bifurcation latitude to wind forcing. J. Phys. Oceanogr., 42, 20562072, https://doi.org/10.1175/JPO-D-11-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 98 98 27
Full Text Views 32 32 11
PDF Downloads 48 48 14

Remote Forcing of Tasman Sea Marine Heatwaves

View More View Less
  • 1 Institute for Marine and Antarctic Studies, and Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Tasmania, Australia
  • 2 Centre for Southern Hemisphere Oceans Research, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
  • 3 Australian Research Council Centre of Excellence for Climate Extremes, and Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
  • 4 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

Recent marine heatwave (MHW) events in the Tasman Sea have had dramatic impacts on the ecosystems, fisheries, and aquaculture off Tasmania’s east coast. However, our understanding of the large-scale drivers (forcing) and potential predictability of MHW events in this region off southeast Australia is still in its infancy. Here, we investigate the role of oceanic Rossby waves forced in the interior South Pacific on observed MHW occurrences off southeast Australia from 1994 to 2016, including the extreme 2015/16 MHW event. First, we used an upper-ocean heat budget analysis to show that 51% of these historical Tasman Sea MHWs were primarily due to increased East Australian Current (EAC) Extension poleward transports through the region. Second, we used lagged correlation analysis to empirically connect the EAC Extension intensification to incoming westward-propagating sea surface height (SSH) anomalies from the interior South Pacific. Third, we dynamically analyzed these SSH anomalies using simple process-based baroclinic and barotropic Rossby wave models forced by wind stress curl changes across the South Pacific. Finally, we show that associated monthly SSH changes around New Zealand may be a useful index of western Tasman Sea MHW predictability, with a lead time of 2–3 years. In conclusion, our findings demonstrate that there is potential predictability of advection-dominated MHW event likelihoods in the EAC Extension region up to several years in advance, due to the deterministic contribution from baroclinic and barotropic Rossby waves in modulating the EAC Extension transports.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeya Li, zeya.li@utas.edu.au

Abstract

Recent marine heatwave (MHW) events in the Tasman Sea have had dramatic impacts on the ecosystems, fisheries, and aquaculture off Tasmania’s east coast. However, our understanding of the large-scale drivers (forcing) and potential predictability of MHW events in this region off southeast Australia is still in its infancy. Here, we investigate the role of oceanic Rossby waves forced in the interior South Pacific on observed MHW occurrences off southeast Australia from 1994 to 2016, including the extreme 2015/16 MHW event. First, we used an upper-ocean heat budget analysis to show that 51% of these historical Tasman Sea MHWs were primarily due to increased East Australian Current (EAC) Extension poleward transports through the region. Second, we used lagged correlation analysis to empirically connect the EAC Extension intensification to incoming westward-propagating sea surface height (SSH) anomalies from the interior South Pacific. Third, we dynamically analyzed these SSH anomalies using simple process-based baroclinic and barotropic Rossby wave models forced by wind stress curl changes across the South Pacific. Finally, we show that associated monthly SSH changes around New Zealand may be a useful index of western Tasman Sea MHW predictability, with a lead time of 2–3 years. In conclusion, our findings demonstrate that there is potential predictability of advection-dominated MHW event likelihoods in the EAC Extension region up to several years in advance, due to the deterministic contribution from baroclinic and barotropic Rossby waves in modulating the EAC Extension transports.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zeya Li, zeya.li@utas.edu.au
Save