• An, S.-I., and F.-F. Jin, 2011: Linear solutions for the frequency and amplitude modulation of ENSO by the annual cycle. Tellus, 63A, 238243, https://doi.org/10.1111/j.1600-0870.2010.00482.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2009: La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805, https://doi.org/10.1029/2009GL037885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1987: Monthly mean island surface winds in the central tropical Pacific and El Niño events. Mon. Wea. Rev., 115, 31333145, https://doi.org/10.1175/1520-0493(1987)115<3133:MMISWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26, 15931596, https://doi.org/10.1029/1999GL900316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s: Decadal changes of recharge/discharge–SST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett., 39, 10707, https://doi.org/10.1029/2012GL051740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z. Z., A. Kumar, H. L. Ren, H. Wang, and F. F. Jin, 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 26012613, https://doi.org/10.1175/JCLI-D-12-00265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, F., W. Zhang, X. Geng, M. F. Stuecker, and C. Liu, 2019: Impacts of central Pacific El Niño on southern China spring precipitation controlled by its longitudinal position. J. Climate, 32, 78237836, https://doi.org/10.1175/JCLI-D-19-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264, 7072, https://doi.org/10.1126/science.264.5155.70.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., I.-S. Kang, and S.-I. An, 2003: Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J. Geophys. Res., 108, 3284, https://doi.org/10.1029/2002JC001671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, and M. H. England, 2012: The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J. Climate, 25, 55665586, https://doi.org/10.1175/JCLI-D-11-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. Ramesh, P. Spence, M. H. England, M. J. McPhaden, and A. Santoso, 2013: Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys. Res. Lett., 40, 749754, https://doi.org/10.1002/grl.50136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, 9706, https://doi.org/10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, https://doi.org/10.1175/JCLI-D-12-00601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., F.-F. Jin, M. F. Stuecker, and R. Xie, 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835842, https://doi.org/10.2151/jmsj.2013-608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, K., A. Timmermann, and N. Schneider, 2011: Phase synchronization of the El Niño–Southern Oscillation with the annual cycle. Phys. Rev. Lett., 107, 128501, https://doi.org/10.1103/PhysRevLett.107.128501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, K., A. Timmermann, N. Schneider, F.-F. Jin, and M. F. Stuecker, 2014: ENSO seasonal synchronization theory. J. Climate, 27, 52855310, https://doi.org/10.1175/JCLI-D-13-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F. F. Jin, S. McGregor, and H. L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, A., J.-J. Luo, A. C. Hirst, D. Bi, W. Cai, and J. He, 2016: Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Sci. Rep., 6, 38540, https://doi.org/10.1038/srep38540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365, https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean-atmosphere oscillator. Science, 264, 7274, https://doi.org/10.1126/science.264.5155.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H., and R. A. Madden, 1981: The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Wea. Rev., 109, 11501162, https://doi.org/10.1175/1520-0493(1981)109<1150:TSOPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2006: The termination of the 1997/98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19, 26332646, https://doi.org/10.1175/JCLI3776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 462, 674674, https://doi.org/10.1038/nature08546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, and A. Turner, 2014: Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41, 40204026, https://doi.org/10.1002/2014GL060130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., L. Wang, B. Xiang, L. Qi, and J. He, 2015a: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 13511366, https://doi.org/10.1007/s00382-014-2155-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., H. Li, F.-F. Jin, M. F. Stuecker, A. G. Turner, and N. P. Klingaman, 2015b: The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J. Climate, 28, 57955812, https://doi.org/10.1175/JCLI-D-14-00724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., H. Li, M. F. Stuecker, F.-F. Jin, and A. G. Turner, 2016a: A new understanding of El Niño’s impact over East Asia: Dominance of the ENSO combination mode. J. Climate, 29, 43474359, https://doi.org/10.1175/JCLI-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016b: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11 37511 382, https://doi.org/10.1002/2016GL071190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Z. Wang, M. F. Stuecker, A. G. Turner, F.-F. Jin, and X. Geng, 2019: Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dyn., 52, 257274, https://doi.org/10.1007/s00382-018-4135-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 43 43 19
Full Text Views 17 17 8
PDF Downloads 18 18 10

Decadal Change of Combination Mode Spatiotemporal Characteristics due to an ENSO Regime Shift

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • 2 Department of Oceanography, and International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 3 Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

Previous studies have shown that nonlinear atmospheric interactions between ENSO and the warm pool annual cycle generates a combination mode (C-mode), which is responsible for the termination of strong El Niño events and the development of the anomalous anticyclone over the western North Pacific (WNP). However, the C-mode has experienced a remarkable decadal change in its characteristics around the early 2000s. The C-mode in both pre- and post-2000 exhibits its characteristic anomalous atmospheric circulation meridional asymmetry but with somewhat different spatial structures and time scales. During 1979–99, the C-mode pattern featured prominent westerly surface wind anomalies in the southeastern tropical Pacific and anticyclonic anomalies over the WNP. In contrast, the C-mode-associated westerly anomalies were shifted farther westward to the central Pacific and the WNP anticyclone was farther westward extended and weaker after 2000. These different C-mode patterns were accompanied by distinct climate impacts over the Indo-Pacific region. The decadal differences of the C-mode are tightly connected with the ENSO regime shift around 2000; that is, the occurrence of central Pacific (CP) El Niño events with quasi-biennial and decadal periodicities increased while the occurrence of eastern Pacific (EP) El Niño events with quasi-quadrennial periodicity decreased. The associated near-annual combination tone periodicities of the C-mode also changed in accordance with these changes in the dominant ENSO frequency between the two time periods. Numerical model experiments further confirm the impacts of the ENSO regime shift on the C-mode characteristics. These results have important implications for understanding the C-mode dynamics and improving predictions of its climate impacts.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Wenjun Zhang, zhangwj@nuist.edu.cn

Abstract

Previous studies have shown that nonlinear atmospheric interactions between ENSO and the warm pool annual cycle generates a combination mode (C-mode), which is responsible for the termination of strong El Niño events and the development of the anomalous anticyclone over the western North Pacific (WNP). However, the C-mode has experienced a remarkable decadal change in its characteristics around the early 2000s. The C-mode in both pre- and post-2000 exhibits its characteristic anomalous atmospheric circulation meridional asymmetry but with somewhat different spatial structures and time scales. During 1979–99, the C-mode pattern featured prominent westerly surface wind anomalies in the southeastern tropical Pacific and anticyclonic anomalies over the WNP. In contrast, the C-mode-associated westerly anomalies were shifted farther westward to the central Pacific and the WNP anticyclone was farther westward extended and weaker after 2000. These different C-mode patterns were accompanied by distinct climate impacts over the Indo-Pacific region. The decadal differences of the C-mode are tightly connected with the ENSO regime shift around 2000; that is, the occurrence of central Pacific (CP) El Niño events with quasi-biennial and decadal periodicities increased while the occurrence of eastern Pacific (EP) El Niño events with quasi-quadrennial periodicity decreased. The associated near-annual combination tone periodicities of the C-mode also changed in accordance with these changes in the dominant ENSO frequency between the two time periods. Numerical model experiments further confirm the impacts of the ENSO regime shift on the C-mode characteristics. These results have important implications for understanding the C-mode dynamics and improving predictions of its climate impacts.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Wenjun Zhang, zhangwj@nuist.edu.cn
Save