• Abatzoglou, J. T., and G. Magnusdottir, 2006: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability. J. Climate, 19, 61396152, https://doi.org/10.1175/JCLI3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiyyer, A. R., and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983, https://doi.org/10.1175/JCLI3685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., 1982: The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon. Wea. Rev., 110, 13931404, https://doi.org/10.1175/1520-0493(1982)110<1393:TRBIVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, https://doi.org/10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kållberg, S. Kobayashi, D. Dee, S. Uppala, A. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelliah, M., and G. D. Bell, 2004: Tropical multidecadal and interannual climate variability in the NCEP–NCAR reanalysis. J. Climate, 17, 17771803, https://doi.org/10.1175/1520-0442(2004)017<1777:TMAICV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., R. McTaggart-Cowan, L. F. Bosart, and C. A. Davis, 2015: Development of North Atlantic tropical disturbances near upper-level potential vorticity streamers. J. Atmos. Sci., 72, 572597, https://doi.org/10.1175/JAS-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1994: Predicting Atlantic basin seasonal tropical cyclone activity by 1 June. Wea. Forecasting, 9, 103115, https://doi.org/10.1175/1520-0434(1994)009<0103:PABSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossmann, I., and P. J. Klotzbach, 2009: A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res., 114, D24107, https://doi.org/10.1029/2009JD012728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2013: Rossby wave breaking and transport between the tropics and extratropics above the subtropical jet. J. Atmos. Sci., 70, 607626, https://doi.org/10.1175/JAS-D-12-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janicot, S., A. Harzallah, B. Fontaine, and V. Moron, 1998: West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J. Climate, 11, 18741882, https://doi.org/10.1175/1520-0442-11.8.1874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janicot, S., S. Trzaska, and I. Poccard, 2001: Summer Sahel–ENSO teleconnection and decadal time scale SST variations. Climate Dyn., 18, 303320, https://doi.org/10.1007/s003820100172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., and L. Li, 2016: Predicting Atlantic seasonal hurricane activity using outgoing longwave radiation over Africa. Geophys. Res. Lett., 43, 71527159, https://doi.org/10.1002/2016GL069792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935, https://doi.org/10.1175/2008JCLI2162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2013: Summary of 2013 Atlantic tropical cyclone activity and verification of authors’ seasonal and two-week forecasts. Accessed 30 August 2018, https://tropical.colostate.edu/media/sites/111/2016/07/2013-11.pdf.

  • Klotzbach, P. J., W. M. Gray, and W. Thorson, 2007: Summary of 2007 Atlantic tropical cyclone activity and verification of authors’ seasonal and two-week forecasts. 53 pp., https://tropical.colostate.edu/media/sites/111/2016/07/2007-11.pdf.

  • Klotzbach, P. J., M. A. Saunders, G. D. Bell, and E. S. Blake, 2017: North Atlantic seasonal hurricane prediction: Underlying science and an evaluation of statistical models. Climate Extremes: Patterns and Mechanisms, Geophys. Monogr., Vol. 226, Amer. Geophys. Union, 315–328, https://doi.org/10.1002/9781119068020.CH19.

    • Crossref
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671782, https://doi.org/10.1175/BAMS-88-11-1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, A., M. Sprenger, and H. Wernli, 2015: Climatology of potential vorticity streamers and associated isentropic transport pathways across PV gradient barriers. J. Geophys. Res. Atmos., 120, 38023821, https://doi.org/10.1002/2014JD022615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and W. M. Gray, 1992: The strong association between western Sahelian monsoon rainfall and intense Atlantic hurricanes. J. Climate, 5, 435453, https://doi.org/10.1175/1520-0442(1992)005<0435:TSABWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, https://doi.org/10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I., and K. Preacher, 2013: Calculation for the test of the difference between two dependent correlations with one variable in common [computer software]. http://quantpsy.org/corrtest/corrtest2.htm.

  • Li, W., Z. Wang, G. Zhang, M. S. Peng, S. G. Benjamin, and M. Zhao, 2018: Subseasonal variability of Rossby wave breaking and impacts on tropical cyclones during the North Atlantic warm season. J. Climate, 31, 96799695, https://doi.org/10.1175/JCLI-D-17-0880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and M. Sprenger, 2008: Dynamical tropopause variability and potential vorticity streamers in the Northern Hemisphere—A climatological analysis. Adv. Atmos. Sci., 25, 367380, https://doi.org/10.1007/s00376-008-0367-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999: Interactions between ENSO, transient circulation, and tropical convectionover the Pacific. J. Climate, 12, 30623086, https://doi.org/10.1175/1520-0442(1999)012<3062:IBETCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, https://doi.org/10.1038/305593a0.

  • Mitchell, T., 2013: Sahel precipitation index (20°–10°N, 20°W–10°E), 1901–2017. Joint Institute for the Study of the Atmosphere and Ocean, https://doi.org/10.6069/H5MW2F2Q.

    • Crossref
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, Nova Science Publishers, 1–36.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papin, P. P., L. F. Bosart, and R. D. Torn, 2020: A feature-based approach to classifying summertime potential vorticity streamers linked to Rossby wave breaking in the North Atlantic basin. J. Climate, https://doi.org/10.1175/JCLI-D-19-0812.1, in press.

    • Crossref
    • Export Citation
  • Patricola, C. M., P. Chang, and R. Saravanan, 2016: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat. Geosci., 9, 155160, https://doi.org/10.1038/ngeo2624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, M., and A. Lea, 2014: Summary of 2013 Atlantic tropical cyclone season and verification of authors’ seasonal forecasts. Tropical Storm Risk. Accessed 30 August 2018, http://tropicalstormrisk.com/docs/TSRATL2013Verification.pdf.

  • Strong, C., and G. Magnusdottir, 2008: How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation. Geophys. Res. Lett., 35, L10706, https://doi.org/10.1029/2008GL033578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., B. Hoskins, and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and Coauthors, Eds., 2020: The Climate Data Guide: Niño SST indices (Niño 1+2, 3, 3.4, 4; ONI and TNI). NCAR, accessed 30 March 2020, https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni.

  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, https://doi.org/10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future, Springer, 173–202, https://doi.org/10.1007/978-1-4020-2944-8_7.

    • Crossref
    • Export Citation
  • Wang, C., Z. Song, F. Qiao, and S. Dong, 2010: What signals are removed and retained by using an anomaly field in climatic research? Int. J. Oceanogr., 2009, 329754, https://doi.org/10.1155/2009/329754.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, https://doi.org/1 0.1175/JAS3912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavadoff, B. L., and B. P. Kirtman, 2019: North Atlantic summertime anticyclonic Rossby wave breaking: Climatology, impacts, and connections to the Pacific decadal oscillation. J. Climate, 32, 485500, https://doi.org/10.1175/JCLI-D-18-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2019: North Atlantic Rossby wave breaking during the hurricane season: Association with tropical and extratropical variability. J. Climate, 32, 37773801, https://doi.org/10.1175/JCLI-D-18-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, https://doi.org/10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, M. S. Peng, and G. Magnusdottir, 2017: Characteristics and impacts of extratropical Rossby wave breaking during the Atlantic hurricane season. J. Climate, 30, 23632379, https://doi.org/10.1175/JCLI-D-16-0425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 126 33
Full Text Views 21 21 6
PDF Downloads 20 20 4

Tropical and Subtropical North Atlantic Vertical Wind Shear and Seasonal Tropical Cyclone Activity

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Given recent insights into the role of anticyclonic Rossby wave breaking (AWB) in driving subseasonal and seasonal North Atlantic tropical cyclone (TC) activity, this study further examines tropical versus subtropical impacts on TC activity by considering large-scale influences on boreal summer tropical zonal vertical wind shear (VWS) variability, a key predictor of seasonal TC activity. Through an empirical orthogonal function analysis, it is shown that subtropical AWB activity drives the second mode of variability in tropical zonal VWS, while El Niño–Southern Oscillation (ENSO) primarily drives the leading mode of variability. Linear regressions of the four leading principal components against tropical North Atlantic zonal VWS and accumulated cyclone energy show that while the leading mode holds much of the regression strength, some improvement can be achieved with the addition of the second and third modes. Furthermore, an index of AWB-associated VWS anomalies, a proxy for AWB impacts on the large-scale environment, may be a better indicator of summertime VWS anomalies. The utilization of this index may be used to better understand AWB’s contribution to seasonal TC activity.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jhordanne J. Jones, jhordanne.jones@colostate.edu

Abstract

Given recent insights into the role of anticyclonic Rossby wave breaking (AWB) in driving subseasonal and seasonal North Atlantic tropical cyclone (TC) activity, this study further examines tropical versus subtropical impacts on TC activity by considering large-scale influences on boreal summer tropical zonal vertical wind shear (VWS) variability, a key predictor of seasonal TC activity. Through an empirical orthogonal function analysis, it is shown that subtropical AWB activity drives the second mode of variability in tropical zonal VWS, while El Niño–Southern Oscillation (ENSO) primarily drives the leading mode of variability. Linear regressions of the four leading principal components against tropical North Atlantic zonal VWS and accumulated cyclone energy show that while the leading mode holds much of the regression strength, some improvement can be achieved with the addition of the second and third modes. Furthermore, an index of AWB-associated VWS anomalies, a proxy for AWB impacts on the large-scale environment, may be a better indicator of summertime VWS anomalies. The utilization of this index may be used to better understand AWB’s contribution to seasonal TC activity.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jhordanne J. Jones, jhordanne.jones@colostate.edu
Save