• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., Z. P. Wen, R. G. Wu, X. Wang, C. He, and Z. S. Chen, 2017: An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dyn., 48, 191207, https://doi.org/10.1007/s00382-016-3069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., X. Wang, W. Zhou, C. Z. Wang, Q. Xie, G. Li, and S. Chen, 2018: Unusual rainfall in southern China in decaying August during extreme El Niño 2015/16: Role of the western Indian Ocean and north tropical Atlantic SST. J. Climate, 31, 70197034, https://doi.org/10.1175/JCLI-D-17-0827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. Y., J.-Y. Yu, X. Wang, and W. P. Jiang, 2019: The changing impact mechanisms of a diverse El Niño on the western Pacific subtropical high. Geophys. Res. Lett., 46, 953962, https://doi.org/10.1029/2018GL081131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z. S., Y. Du, Z. P. Wen, R. G. Wu, and C. Z. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming. Climate Dyn., 50, 47074719, https://doi.org/10.1007/s00382-017-3899-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C. Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, https://doi.org/10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freund, M. B., B. J. Henley, D. J. Karoly, H. V. McGregor, N. J. Abram, and D. Dommenget, 2019: Higher frequency of central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci., 12, 450455, https://doi.org/10.1038/s41561-019-0353-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., H. J. Wang, and D. Chen, 2018: Precipitation anomalies in the Pan-Asian monsoon region during El Niño decaying summer 2016. Int. J. Climatol., 38, 36183632, https://doi.org/10.1002/joc.5522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Q. Y., and J. Q. Wang, 1988: A comparison of the summer precipitation in India with that in China (in Chinese). J. Trop. Meteor., 4, 5360.

    • Search Google Scholar
    • Export Citation
  • Han, T. T., H. J. Wang, and J. Q. Sun, 2017: Strengthened relationship between eastern ENSO and summer precipitation over northeastern China. J. Climate, 30, 44974512, https://doi.org/10.1175/JCLI-D-16-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T. T., S. P. He, H. J. Wang, and X. Hao, 2018: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over northeast China. Climate Dyn., 51, 40654076, https://doi.org/10.1007/s00382-017-3669-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z. Q., and R. G. Wu, 2013: Coupled seasonal variability in the South China Sea. J. Oceanogr., 69, 5769, https://doi.org/10.1007/s10872-012-0157-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 2001: Monsoon rainfall variations and teleconnections over South and East Asia. Int. J. Climatol., 21, 603616, https://doi.org/10.1002/joc.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2001: Baiu rainfall variability and associated monsoon teleconnection. J. Meteor. Soc. Japan, 79, 851860, https://doi.org/10.2151/jmsj.79.851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and H. Y. Weng, 2001: Coherent modes of global SST and Summer rainfall over China: An assessment of the regional impacts of the 1997–98 El Niño. J. Climate, 14, 12941308, https://doi.org/10.1175/1520-0442(2001)014<1294:CMOGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. F., W. Chen, X. W. Hong, and R. Y. Lu, 2017: Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?—Role of midlatitude circulation in August. Adv. Atmos. Sci., 34, 12901300, https://doi.org/10.1007/s00376-017-7003-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. L., J. Lu, G. Huang, and K. M. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, https://doi.org/10.1175/2008JCLI2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and N. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B. Q., C. W. Zhu, J. Z. Su, L. J. Hua, and Y. H. Duan, 2018: Why was the western Pacific subtropical anticyclone weaker in late summer after the 2015/2016 super El Niño? Int. J. Climatol., 38, 5565, https://doi.org/10.1002/joc.5160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neal, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-4861STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • NOAA/OAR/ESRL, 2004: NCEP Global Ocean Data Assimilation System (GODAS). NOAA/OAR/ESRL Physical Sciences Division (PSD), accessed 6 February 2018, https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html#detail.

  • Paek, H., J.-Y. Yu, and C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Paek, H., J.-Y. Yu, F. Zheng, and M. M. Lu, 2019: Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer. Climate Dyn., 52, 71537172, https://doi.org/10.1007/s00382-016-3288-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air-sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, https://doi.org/10.1007/s00382-011-1115-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: A global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H. L., and F. F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

  • Ren, R., S. Sun, Y. Yang, and Q. Li, 2016: Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase. Climate Dyn., 47, 18271844, https://doi.org/10.1007/s00382-015-2935-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, https://doi.org/10.1002/qj.49712253408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. C., G. Huang, K. M. Hu, X. Qu, G. H. Wen, and Y. F. Gong, 2014: Different influences of two types of El Niños on the Indian Ocean SST variations. Theor. Appl. Climatol., 117, 475484, https://doi.org/10.1007/s00704-013-1022-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, J. Yang, T. J. Zhou, and Z. W. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 38643875, https://doi.org/10.1175/2009JCLI2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, M. Wen, X. Y. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, https://doi.org/10.1007/s00382-013-1938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. H. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over central Asia and North China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, and S. A. Rao, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 18791895, https://doi.org/10.1002/joc.845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., 2017: Relationship between Indian and East Asian summer rainfall variations. Adv. Atmos. Sci., 34, 415, https://doi.org/10.1007/s00376-016-6216-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., Z. Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., S. Yang, Z. P. Wen, G. Huang, and K. M. Hu, 2012: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol., 108, 119133, https://doi.org/10.1007/s00704-011-0519-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., and A. Kumar, 2017: Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. China Earth Sci., 60, 15721588, https://doi.org/10.1007/s11430-016-0106-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. L., Q. Y. Liu, S. P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2010: Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett., 37, L15705, https://doi.org/10.1029/2010GL044082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H. Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J. Climate, 23, 28692884, https://doi.org/10.1175/2010JCLI3171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., M. M. Lu, and S. T. Kim, 2012: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, https://doi.org/10.1088/1748-9326/7/3/034025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P. K. Kao, H. Paek, H. H. Hsu, C. W. Hung, M. M. Lu, and S. I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, https://doi.org/10.1175/JCLI-D-11-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., S. Yang, and Z. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 78677883, https://doi.org/10.1175/JCLI-D-12-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Gao, W. J. Li, Y. J. Liu, L. J. Chen, B. Zhou, and Y. H. Ding, 2017: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteor. Res., 31, 261277, https://doi.org/10.1007/s13351-017-6192-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 36 36 28
Full Text Views 16 16 7
PDF Downloads 15 15 3

Different Influences of Southeastern Indian Ocean and Western Indian Ocean SST Anomalies on Eastern China Rainfall during the Decaying Summer of the 2015/16 Extreme El Niño

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China, and Department of Earth System Science, University of California, Irvine, California
  • 2 Department of Earth System Science, University of California, Irvine, California
  • 3 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
  • 4 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
© Get Permissions
Restricted access

ABSTRACT

Previous studies linked the increase of the middle and low reaches of the Yangtze River (MLRYR) rainfall to tropical Indian Ocean warming during extreme El Niños’ (e.g., 1982/83 and 1997/98 extreme El Niños) decaying summer. This study finds the linkage to be different for the recent 2015/16 extreme El Niño’s decaying summer, during which the above-normal rainfalls over MLRYR and northern China are respectively linked to southeastern Indian Ocean warming and western tropical Indian Ocean cooling in sea surface temperatures (SSTs). The southeastern Indian Ocean warming helps to maintain the El Niño–induced anomalous lower-level anticyclone over the western North Pacific Ocean and southern China, which enhances moisture transport to increase rainfall over MLRYR. The western tropical Indian Ocean cooling first enhances the rainfall over central-northern India through a regional atmospheric circulation, the latent heating of which further excites a midlatitude Asian teleconnection pattern (part of circumglobal teleconnection) that results in an above-normal rainfall over northern China. The western tropical Indian Ocean cooling during the 2015/16 extreme El Niño is contributed by the increased upward latent heat flux anomalies associated with enhanced surface wind speeds, opposite to the earlier two extreme El Niños.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Wang, wangxin@scsio.ac.cn

ABSTRACT

Previous studies linked the increase of the middle and low reaches of the Yangtze River (MLRYR) rainfall to tropical Indian Ocean warming during extreme El Niños’ (e.g., 1982/83 and 1997/98 extreme El Niños) decaying summer. This study finds the linkage to be different for the recent 2015/16 extreme El Niño’s decaying summer, during which the above-normal rainfalls over MLRYR and northern China are respectively linked to southeastern Indian Ocean warming and western tropical Indian Ocean cooling in sea surface temperatures (SSTs). The southeastern Indian Ocean warming helps to maintain the El Niño–induced anomalous lower-level anticyclone over the western North Pacific Ocean and southern China, which enhances moisture transport to increase rainfall over MLRYR. The western tropical Indian Ocean cooling first enhances the rainfall over central-northern India through a regional atmospheric circulation, the latent heating of which further excites a midlatitude Asian teleconnection pattern (part of circumglobal teleconnection) that results in an above-normal rainfall over northern China. The western tropical Indian Ocean cooling during the 2015/16 extreme El Niño is contributed by the increased upward latent heat flux anomalies associated with enhanced surface wind speeds, opposite to the earlier two extreme El Niños.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Wang, wangxin@scsio.ac.cn
Save