• Bjerknes, J., 1966: Survey of El Niño 1957-58 in its relation to tropical Pacific meteorology. Inter-Amer. Trop. Tuna Comm. Bull., 12, 162.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014: What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. J. Climate, 27, 27572778, https://doi.org/10.1175/JCLI-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N. J., L. Muir, E. M. Vincent, and A. Fedorov, 2017: Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Climate Dyn., 49, 20932113, https://doi.org/10.1007/s00382-016-3435-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., G. Zappa, T. G. Shepherd, and J. M. Gregory, 2018: Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Climate, 31, 10911105, https://doi.org/10.1175/JCLI-D-17-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2018: A role for the Equatorial Undercurrent in the ocean dynamical thermostat. J. Climate, 31, 62456261, https://doi.org/10.1175/JCLI-D-17-0513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayem, K. E., D. C. Noone, and P. Molnar, 2007: Tropical western Pacific warm pool and Maritime Continent precipitation rates and their contrasting relationships with the Walker circulation. J. Geophys. Res., 112, D06101, https://doi.org/10.1029/2006JD007870.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, https://doi.org/10.1175/2009JCLI2982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, https://doi.org/10.1175/JCLI-D-11-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., G. A. Vecchi, and A. C. Clement, 2013: Detectability of changes in the Walker circulation in response to global warming. J. Climate, 26, 40384048, https://doi.org/10.1175/JCLI-D-12-00531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfani, E., and N. J. Burls, 2019: The strength of low-cloud feedbacks and tropical climate: A CESM sensitivity study. J. Climate, 32, 24972516, https://doi.org/10.1175/JCLI-D-18-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, https://doi.org/10.1126/science.288.5473.1997.

  • Fedorov, A. V., N. J. Burls, K. T. Lawrence, and L. C. Peterson, 2015: Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci., 8, 975980, https://doi.org/10.1038/ngeo2577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, https://doi.org/10.1126/science.275.5301.805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nat. Climate Change, 8, 798802, https://doi.org/10.1038/s41558-018-0248-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: Indian Ocean warming can strenthen the Atlantic meridional overturning circulation. Nat. Climate Change, 9, 747751, https://doi.org/10.1038/s41558-019-0566-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projections. J. Climate, 28, 2035, https://doi.org/10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña–like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 42074225, https://doi.org/10.1175/JCLI-D-16-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2018: Weakening of nonlinear ENSO under global warming. Geophys. Res. Lett., 45, 85578567, https://doi.org/10.1029/2018GL079085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, https://doi.org/10.1007/s00382-013-1856-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, Y. Du, and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., 47, 38173831, https://doi.org/10.1007/s00382-016-3043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1998: The role of ocean in the response of tropical climatology to global warming: The west–east SST contrast. J. Climate, 11, 864875, https://doi.org/10.1175/1520-0442(1998)011<0864:TROOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and B. Huang, 1997: A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation. J. Climate, 10, 16621679, https://doi.org/10.1175/1520-0442(1997)010<1662:ACTOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and W. Liu, 2015: Understanding the El Niño-like oceanic response in the tropical Pacific to global warming. Climate Dyn., 45, 19451964, https://doi.org/10.1007/s00382-014-2448-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and O. Garuba, 2017: The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Climate, 30, 28112827, https://doi.org/10.1175/JCLI-D-16-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and T. Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 30973118, https://doi.org/10.1175/JCLI-D-15-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Q., M. Latif, W. Park, N. S. Keenlyside, V. A. Semenov, and T. Martin, 2012: Twentieth century Walker circulation change: Data analysis and model experiments. Climate Dyn., 38, 17571773, https://doi.org/10.1007/s00382-011-1047-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768, https://doi.org/10.1175/2011JCLI4042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plesca, E., V. Grützun, and S. A. Buehler, 2018: How robust is the weakening of the Pacific Walker circulation in CMIP5 idealized transient climate simulations? J. Climate, 31, 8197, https://doi.org/10.1175/JCLI-D-17-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., B. Blanke, G. Madec, O. Aumont, P. Ciais, and J.-C. Dutay, 2003: Extratropical sources of equatorial Pacific upwelling in an OGCM. Geophys. Res. Lett., 30, 1080, https://doi.org/10.1029/2002GL016003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521534, https://doi.org/10.1175/1520-0442(1997)010<0521:ODTAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., and A. V. Fedorov, 2017: The eastern subtropical Pacific origin of the equatorial cold bias in climate models: A Lagrangian perspective. J. Climate, 30, 58855900, https://doi.org/10.1175/JCLI-D-16-0819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura, 2012: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, https://doi.org/10.1175/JCLI-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus., 46A, 340350, https://doi.org/10.3402/tellusa.v46i4.15484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, G., H. Tsujino, H. Nakano, and M. Hirabara, 2015: Decadal variability of the Pacific subtropical cells and its relevance to the sea surface height in the western tropical Pacific during recent decades. J. Geophys. Res. Oceans, 120, 201224, https://doi.org/10.1002/2014JC010190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., C. Deser, A. Clement, and R. Tomas, 2014: Equatorial signatures of the Pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568574, https://doi.org/10.1002/2013GL058842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and K. B. Karnauskas, 2017: The role of tropical interbasin SST gradients in forcing Walker circulation trends. J. Climate, 30, 499508, https://doi.org/10.1175/JCLI-D-16-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, K. B. Karnauskas, G. A. Meehl, A. Hu, N. Rosenbloom, and T. Shinoda, 2019: Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: An interbasin thermostat mechanism. Geophys. Res. Lett., 46, 10 88210 890, https://doi.org/10.1029/2019GL084088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and A. Fedorov, 2020: The effects of background zonal and meridional winds on ENSO in a coupled GCM. J. Climate, 33, 20752091, https://doi.org/10.1175/JCLI-D-18-0822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 75 75 46
Full Text Views 21 21 12
PDF Downloads 33 33 24

Time Scales and Mechanisms for the Tropical Pacific Response to Global Warming: A Tug of War between the Ocean Thermostat and Weaker Walker

View More View Less
  • 1 Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut
  • 2 Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, and LOCEAN/IPSL, Sorbonne University, Paris, France
  • 3 Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

Different oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ulla K. Heede, ulla.heede@yale.edu

Abstract

Different oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ulla K. Heede, ulla.heede@yale.edu
Save