• Barker, S., P. Diz, M. J. Vautravers, J. Pike, G. Knorr, I. R. Hall, and W. S. Broecker, 2009: Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457, 10971102, https://doi.org/10.1038/nature07770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1998: Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13, 119121, https://doi.org/10.1029/97PA03707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, https://doi.org/10.1175/2010JCLI3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., and Coauthors, 2019: The DOE E3SM coupled model version 1: Description and results at high resolution. J. Adv. Model. Earth Syst., 11, 40954146, https://doi.org/10.1029/2019MS001870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cunningham, S. A., and R. Marsh, 2010: Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev.: Climate Change, 1, 180191, https://doi.org/10.1002/WCC.22.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2013: Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett., 40, 62026207, https://doi.org/10.1002/2013GL058464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2019: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., 2010: The atmospheric response to a thermohaline circulation collapse: Scaling relations for the Hadley circulation and the response in a coupled climate model. J. Climate, 23, 757774, https://doi.org/10.1175/2009JCLI3159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: High climate sensitivity in the Community Earth System Model version 2 (CESM2). Geophys. Res. Lett., 46, 83298337, https://doi.org/10.1029/2019GL083978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J. C., and Coauthors, 2019: The DOE E3SM1 coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, https://doi.org/10.1029/2005GL023209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., and S. C. Bates, 2018: Internal climate variability and projected future regional steric and dynamic sea level rise. Nat. Commun., 9, 1068, https://doi.org/10.1038/s41467-018-03474-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. M. Washington, and A. Dai, 2004: Response of the Atlantic thermohaline circulation to increased atmospheric CO2 in a coupled model. J. Climate, 17, 42674279, https://doi.org/10.1175/JCLI3208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., B. L. Otto-Bliesner, G. A. Meehl, W. Han, C. Morrill, E. C. Brady, and B. Briegleb, 2008: Response of thermohaline circulation to freshwater forcing under present day and LGM conditions. J. Climate, 21, 22392258, https://doi.org/10.1175/2007JCLI1985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., and Coauthors, 2010: Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat. Geosci., 3, 118121, https://doi.org/10.1038/ngeo729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, and J. Yin, 2011: Effect of the potential melting of the Greenland Ice Sheet on the meridional overturning circulation and global climate in the future. Deep-Sea Res. II, 58, 19141926, accessed October 2019, https://doi.org/10.1016/j.dsr2.2010.10.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., and Coauthors, 2012: Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc. Natl. Acad. Sci. USA, 109, 64176422, https://doi.org/10.1073/pnas.1116014109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, J. Yin, B. Wu, and M. Kimoto, 2013: Influence of continental ice retreat on future global climate. J. Climate, 26, 30873111, https://doi.org/10.1175/JCLI-D-12-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, B. Otto-Bliesner, A. Abe-Ouchi, and N. Rosenbloom, 2015: Effects of the Bering Strait closure on AMOC and global climate under different background climates. Prog. Oceanogr., 132, 174196, https://doi.org/10.1016/j.pocean.2014.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, https://doi.org/10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., K. C. Armour, and J. Marshall, 2014: Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett., 41, 21082116, https://doi.org/10.1002/2013GL058998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-J., Y.-T. Hwang, P. Ceppi, and J. M. Gregory, 2019: Uncertainty in the evolution of climate feedback traced to the strength of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 46, 12 33112 339, https://doi.org/10.1029/2019GL083084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Petersen, M. R., and Coauthors, 2019: An evaluation of the ocean and sea ice climate of E3SM using MPAS and interannual CORE-II forcing. J. Adv. Model. Earth Syst., 11, 14381458, https://doi.org/10.1029/2018MS001373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811, https://doi.org/10.1007/s003820050144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1994: On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers and transports. Prog. Oceanogr., 33, 192, https://doi.org/10.1016/0079-6611(94)90014-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugenstein, M. A. A., M. Winton, R. J. Stouffer, S. M. Griffies, and R. Hallberg, 2013: Northern high-latitude heat budget decomposition and transient warming. J. Climate, 26, 609621, https://doi.org/10.1175/JCLI-D-11-00695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2019: Eddy-resolving in situ ocean climatologies of temperature and salinity in the northwest Atlantic Ocean. J. Geophys. Res. Oceans, 124, 4158, https://doi.org/10.1029/2018JC014548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, https://doi.org/10.1002/2014MS000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D., B. Moat, D. Rayner, W. E. Johns, M. O. Baringer, D. Volkov, and E. Frajka-Williams, 2019: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array–Western Boundary Time Series) array at 26°N from 2004 to 2018. British Oceanographic Data Centre, National Oceanography Centre, NERC, accessed October 2019, https://doi.org/10.5285/8cd7e7bb-9a20-05d8-e053-6c86abc012c2.

    • Crossref
    • Export Citation
  • Smethie, W. M., R. A. Fine, A. Putzka, and E. P. Jones, 2000: Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res., 105, 14 29714 323, https://doi.org/10.1029/1999JC900274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and D. G. Wright, 1991a: A zonally averaged ocean model for the thermoshaline circulation. Part II: Interocean circulation in the Pacific–Atlantic basin system. J. Phys. Oceanogr., 21, 17251739, https://doi.org/10.1175/1520-0485(1991)021<1725:AZAOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and D. G. Wright, 1991b: Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729732, https://doi.org/10.1038/351729a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., L. A. Mysak, and D. G. Wright, 1992: A zonally averaged, coupled ocean–atmosphere model for paleoclimate studies. J. Climate, 5, 773797, https://doi.org/10.1175/1520-0442(1992)005<0773:AZACOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolpe, M. B., I. Medhaug, J. Sedlacek, and R. Knutti, 2018: Multidecadal variability in global surface temperatures related to the Atlantic meridional overturning circulation. J. Climate, 31, 28892906, https://doi.org/10.1175/JCLI-D-17-0444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanhua, T., K. A. Olsson, and E. Jeansson, 2005: Formation of Denmark Strait overflow water and its hydro-chemical composition. J. Mar. Syst., 57, 264288, https://doi.org/10.1016/j.jmarsys.2005.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2019: Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis. J. Geophys. Res. Oceans, 124, 53365375, https://doi.org/10.1029/2019JC015083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. Cheng, O. Garuba, A. Hu and B. T. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett., https://doi.org/10.1029/2019GL086075, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, https://doi.org/10.1175/JCLI-D-12-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, https://doi.org/10.1175/JCLI-D-11-00595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 218 218 34
Full Text Views 71 71 23
PDF Downloads 57 57 21

Role of AMOC in Transient Climate Response to Greenhouse Gas Forcing in Two Coupled Models

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • 2 Los Alamos National Laboratory, Los Alamos, New Mexico
  • 3 Pacific Northwest National Laboratory, Richland, Washington
  • 4 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • 5 Los Alamos National Laboratory, Los Alamos, New Mexico
© Get Permissions
Restricted access

Abstract

As the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal climate processes can modulate the primary radiative warming response of the climate system to rising greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic meridional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to transport heat and other scalars, and we address the question of how the mean strength of AMOC can modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus, while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to play an important role in determining the transient climate response on the centennial time scale.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-1027.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aixue Hu, ahu@ucar.edu

Abstract

As the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal climate processes can modulate the primary radiative warming response of the climate system to rising greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic meridional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to transport heat and other scalars, and we address the question of how the mean strength of AMOC can modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus, while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to play an important role in determining the transient climate response on the centennial time scale.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-1027.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aixue Hu, ahu@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 638.82 KB)
Save