• Andersen, T., J. Carstensen, E. Hernández-García, and C. M. Duarte, 2009: Ecological thresholds and regime shifts: Approaches to identification. Trends Ecol. Evol., 24, 4957, https://doi.org/10.1016/j.tree.2008.07.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basseville, M., and I. V. Nikiforov, 1993: Detection of Abrupt Changes: Theory and Application, Prentice Hall, 528 pp.

  • Bathiany, S., D. Notz, T. Mauritsen, V. Brovkin, and G. Raedel, 2016: On the potential for abrupt Arctic winter sea-ice loss. J. Climate, 29, 27032719, https://doi.org/10.1175/JCLI-D-15-0466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., J. Chen, and J. L. Sarmiento, 2012: Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. Roy. Soc., 370A, 12281249, https://doi.org/10.1098/RSTA.2011.0383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaulieu, C., R. Killick, S. Taylor, and H. Hullait, 2016: Package EnvCpt—Detection of structural changes in climate and environment time series. https://cran.r-project.org/web/packages/EnvCpt/EnvCpt.pdf.

  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byna, S., Prabhat, M. F. Wehner, and K. J. Wu, 2011: Detecting atmospheric rivers in large climate datasets. Proc. Second Int. Workshop on Petascale Data Analytics: Challenges and opportunities (PDAC’11), Seattle, WA, PDAC, 7–14.

    • Crossref
    • Export Citation
  • Canny, J., 1986: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8, 679698, https://doi.org/10.1109/TPAMI.1986.4767851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1985: Sudden stratospheric warmings as catastrophes. J. Atmos. Sci., 42, 16311646, https://doi.org/10.1175/1520-0469(1985)042<1631:SSWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P., and X. Zhao, 2011: Bayesian analysis for extreme climatic events: A review. Atmos. Res., 102, 243262, https://doi.org/10.1016/j.atmosres.2011.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. T., S. J. Brown, and J. M. Murphy, 2006: Modeling Northern Hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J. Climate, 19, 44184435, https://doi.org/10.1175/JCLI3877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 14 May 2019, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview.

  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, https://doi.org/10.1038/nclimate1452.

  • Csörgö, M., and L. Horváth, 1997: Limit Theorems in Change-Point Analysis. John Wiley and Sons, 414 pp.

  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dim, J. R., and T. Takamura, 2013: Alternative approach for satellite cloud classification: Edge gradient application. Adv. Meteor., 2013, 584816, https://doi.org/10.1155/2013/584816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., F. Nencioli, Y. Liu, and J. C. McWilliams, 2011: An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. Geosci. Remote Sens. Lett., 8, 10551059, https://doi.org/10.1109/LGRS.2011.2155029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., and Coauthors, 2015: Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl. Acad. Sci. USA, 112, E5777E5786, https://doi.org/10.1073/pnas.1511451112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducré-Robitaille, J.-F., L. A. Vincent, and G. Boulet, 2003: Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol., 23, 10871101, https://doi.org/10.1002/joc.924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., and V. Kumar, 2014: A big data guide to understanding climate change: The case for theory-guided data science. Big Data, 2, 155163, https://doi.org/10.1089/big.2014.0026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flach, M., and Coauthors, 2017: Multivariate anomaly detection for Earth observations: A comparison of algorithms and feature extraction techniques. Earth Syst. Dyn., 8, 677696, https://doi.org/10.5194/esd-8-677-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flach, M., S. Sippel, F. Gans, A. Bastos, A. Brenning, M. Reichstein, and M. D. Mahecha, 2018: Contrasting biosphere responses to hydrometeorological extremes: Revisiting the 2010 western Russian heatwave. Biogeosciences, 15, 60676085, https://doi.org/10.5194/bg-15-6067-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganguly, A. R., and Coauthors, 2014: Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques. Nonlinear Processes Geophys., 21, 777795, https://doi.org/10.5194/npg-21-777-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, https://doi.org/10.1080/10643380802238137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227238, https://doi.org/10.1016/j.pocean.2015.12.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, M., R. A. Moyeed, C. L. Reid, R. Pakeman, and R. Weaver, 2006: Geostatistics, spatial rate of change analysis and boundary detection in plant ecology and biogeography. Prog. Phys. Geogr., 30, 201231, https://doi.org/10.1191/0309133306pp477ra.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kern, M., T. Hewson, F. Sadlo, R. Westermann, and M. Rautenhaus, 2018a: Robust detection and visualization of jet-stream core lines in atmospheric flow. IEEE Trans. Vis. Comput. Graph., 24, 893902, https://doi.org/10.1109/TVCG.2017.2743989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kern, M., T. Hewson, A. Schaefler, R. Westermann, and M. Rautenhaus, 2018b: Interactive 3D visual analysis of atmospheric fronts. IEEE Trans. Vis. Comput. Graph., 25, 10801090, https://doi.org/10.1109/tvcg.2018.2864806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavergne, T., and Coauthors, 2019: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea ice concentration climate data records. Cryosphere, 13, 4978, https://doi.org/10.5194/tc-13-49-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber, 2008: Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA, 105, 17861793, https://doi.org/10.1073/pnas.0705414105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. Liu, and J. M. Chen, 2012: Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res., 117, G04003, https://doi.org/10.1029/2012JG002084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2016: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. http://arxiv.org/abs/1605.01156.

  • Lloyd-Hughes, B., 2012: A spatio-temporal structure-based approach to drought characterisation. Int. J. Climatol., 32, 406418, https://doi.org/10.1002/joc.2280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Sci., 4, M00A01, https://doi.org/10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • McNeall, D., J. Williams, B. Booth, R. Betts, P. Challenor, A. Wiltshire, and D. Sexton, 2016: The impact of structural error on parameter constraint in a climate model. Earth Syst. Dyn., 7, 917935, https://doi.org/10.5194/esd-7-917-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteleoni, C., G. A. Schmidt, and S. McQuade, 2013: Climate informatics: Accelerating discovering in climate science with machine learning. Comput. Sci. Eng., 15, 3240, https://doi.org/10.1109/MCSE.2013.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortin, J., T. M. Schroder, A. W. Hansen, B. Holt, and K. C. McDonald, 2012: Mapping of seasonal freeze-thaw transitions across the pan-Arctic land and sea ice domains with satellite radar. J. Geophys. Res., 117, C08004, https://doi.org/10.1029/2012JC008001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, F. E. L., S. Philip, S. Kew, S. Li, A. King, and H. Cullen, 2018: Attributing high-impact extreme events across timescales—A case study of four different types of events. Climatic Change, 149, 399412, https://doi.org/10.1007/s10584-018-2258-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overpeck, J. T., G. A. Meehl, S. Bony, and D. R. Easterling, 2011: Climate data challenges in the 21st century. Science, 331, 700702, https://doi.org/10.1126/science.1197869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabhat, O. Rübel, S. Byna, K. Wu, F. Li, M. Wehner, and W. Bethel, 2012: TECA: A parallel toolkit for extreme climate analysis. Procedia Comput. Sci., 9, 866876, https://doi.org/10.1016/j.procs.2012.04.093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Racah, E., C. Beckham, T. Maharaj, S. E. Kahou, Prabhat, and C. Pal, 2017: Extreme weather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. NIPS ’17: Proc. 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, NIPS, 3405–3416, https://dl.acm.org/doi/pdf/10.5555/3294996.3295099.

  • Radke, R. J., S. Andra, O. Al-Kofahi, and B. Roysam, 2005: Image change detection algorithms: A systematic survey. IEEE Trans. Image Process., 14, 294307, https://doi.org/10.1109/TIP.2004.838698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915, https://doi.org/10.1175/JAM2493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195204, https://doi.org/10.1038/s41586-019-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva, E. G., and A. A. C. Teixeira, 2008: Surveying structural change: Seminal contributions and a bibliometric account. Struct. Change Econ. Dyn., 19, 273300, https://doi.org/10.1016/j.strueco.2008.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulikowska, A., Walawender, J. P., and Walawender, E., 2019: Temperature extremes in Alaska: Temporal variability and circulation background. Theor. Appl. Climatol., 136, 955970, https://doi.org/10.1007/s00704-018-2528-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., 2013: Exploring edge complexity in remote-sensing vegetation index imageries. J. Land Use Sci., 9, 165177, https://doi.org/10.1080/1747423X.2012.756071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Metor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Topa, L. C., and R. J. Schalkoff, 1989: Edge detection and thinning in time-varying image sequences using spatio-temporal templates. Pattern Recognit., 22, 143154, https://doi.org/10.1016/0031-3203(89)90061-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeileis, A., C. Kleiber, W. Kraemer, and K. Hornik, 2003: Testing and dating of structural changes in practice. Comput. Stat. Data Anal., 44, 109123, https://doi.org/10.1016/S0167-9473(03)00030-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Y. Cui, X. Zhou, and Y. Wang, 2016: Evaluation of performance of different methods in detecting abrupt climate changes. Discrete Dyn. Nat. Soc., 2016, 5898697, https://doi.org/10.1155/2016/5898697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., M. D. Mahecha, S. Harmeling, and M. Reichstein, 2013: Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol. Inform., 15, 6673, https://doi.org/10.1016/j.ecoinf.2013.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 101 101 56
Full Text Views 9 9 6
PDF Downloads 16 16 12

Edge Detection Reveals Abrupt and Extreme Climate Events

View More View Less
  • 1 Wageningen University and Research, Wageningen, Netherlands
  • 2 Netherlands eScience Center, Amsterdam, Netherlands
  • 3 Wageningen University and Research, Wageningen, Netherlands
© Get Permissions
Restricted access

Abstract

The most discernible and devastating impacts of climate change are caused by events with temporary extreme conditions (“extreme events”) or abrupt shifts to a new persistent climate state (“tipping points”). The rapidly growing amount of data from models and observations poses the challenge to reliably detect where, when, why, and how these events occur. This situation calls for data-mining approaches that can detect and diagnose events in an automatic and reproducible way. Here, we apply a new strategy to this task by generalizing the classical machine-vision problem of detecting edges in 2D images to many dimensions (including time). Our edge detector identifies abrupt or extreme climate events in spatiotemporal data, quantifies their abruptness (or extremeness), and provides diagnostics that help one to understand the causes of these shifts. We also publish a comprehensive toolset of code that is documented and free to use. We document the performance of the new edge detector by analyzing several datasets of observations and models. In particular, we apply it to all monthly 2D variables of the RCP8.5 scenario of the Coupled Model Intercomparison Project (CMIP5). More than half of all simulations show abrupt shifts of more than 4 standard deviations on a time scale of 10 years. These shifts are mostly related to the loss of sea ice and permafrost in the Arctic. Our results demonstrate that the edge detector is particularly useful to scan large datasets in an efficient way, for example multimodel or perturbed-physics ensembles. It can thus help to reveal hidden “climate surprises” and to assess the uncertainties of dangerous climate events.

Current affiliation: Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0449.s1.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Bathiany, sebastian.bathiany@hzg.de

Abstract

The most discernible and devastating impacts of climate change are caused by events with temporary extreme conditions (“extreme events”) or abrupt shifts to a new persistent climate state (“tipping points”). The rapidly growing amount of data from models and observations poses the challenge to reliably detect where, when, why, and how these events occur. This situation calls for data-mining approaches that can detect and diagnose events in an automatic and reproducible way. Here, we apply a new strategy to this task by generalizing the classical machine-vision problem of detecting edges in 2D images to many dimensions (including time). Our edge detector identifies abrupt or extreme climate events in spatiotemporal data, quantifies their abruptness (or extremeness), and provides diagnostics that help one to understand the causes of these shifts. We also publish a comprehensive toolset of code that is documented and free to use. We document the performance of the new edge detector by analyzing several datasets of observations and models. In particular, we apply it to all monthly 2D variables of the RCP8.5 scenario of the Coupled Model Intercomparison Project (CMIP5). More than half of all simulations show abrupt shifts of more than 4 standard deviations on a time scale of 10 years. These shifts are mostly related to the loss of sea ice and permafrost in the Arctic. Our results demonstrate that the edge detector is particularly useful to scan large datasets in an efficient way, for example multimodel or perturbed-physics ensembles. It can thus help to reveal hidden “climate surprises” and to assess the uncertainties of dangerous climate events.

Current affiliation: Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-19-0449.s1.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Bathiany, sebastian.bathiany@hzg.de

Supplementary Materials

    • Supplemental Materials (PDF 2.49 MB)
Save