• Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armal, S., N. Devineni, and R. Khanbilvardi, 2018: Trends in extreme rainfall frequency in the contiguous United States: Attribution to climate change and climate variability modes. J. Climate, 31, 369385, https://doi.org/10.1175/JCLI-D-17-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aubert, E. J., 1957: On the release of latent heat as a factor in large scale atmospheric motions. J. Meteor., 14, 527542, https://doi.org/10.1175/1520-0469(1957)014<0527:OTROLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, S., and S. Nigam, 2015: Key role of the North Pacific Oscillation–west Pacific pattern in generating the extreme 2013/14 North American winter. J. Climate, 28, 81098117, https://doi.org/10.1175/JCLI-D-14-00726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Principles of Kinematics and Dynamics. Vol. 1, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 431 pp.

  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.

  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406, https://doi.org/10.1175/2010BAMS3013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., N. A. Bond, N. K. Larkin, and R. J. Barbour, 2016: Summertime rainfall events in eastern Washington and Oregon. Wea. Forecasting, 31, 14651480, https://doi.org/10.1175/WAF-D-16-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, A. B. M., M. G. Bosilovich, and R. D. Koster, 2016: Large-scale influences on summertime extreme precipitation in the northeastern United States. J. Hydrometeor., 17, 30453061, https://doi.org/10.1175/JHM-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., G. H. Taylor, W. P. Gibson, T. W. Parzybok, G. L. Johnson, and P. A. Pasteris, 2000: High-quality spatial climate data sets for the United States and beyond. Trans. ASAE, 43, 19571962, https://doi.org/10.13031/2013.3101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. E. Waliser, B. Guan, F. M. Ralph, and F. Vitart, 2019: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., 52, 30393060, https://doi.org/10.1007/s00382-018-4309-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, and J. J. Rutz, 2018: Empirical return periods of the most intense vapor transports during historical atmospheric river landfalls on the U.S. West Coast. J. Hydrometeor., 19, 13631377, https://doi.org/10.1175/JHM-D-17-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, F. Song, and J. Lu, 2018: Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the U.S. West Coast. J. Climate, 31, 80398058, https://doi.org/10.1175/JCLI-D-18-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P. X., J. B. Basara, J. C. Furtado, and X. Xiao, 2018: Primary atmospheric drivers of pluvial years in the United States Great Plains. J. Hydrometeor., 19, 643658, https://doi.org/10.1175/JHM-D-17-0148.1.

    • Search Google Scholar
    • Export Citation
  • Frei, A., K. E. Kunkel, and A. Matonse, 2015: The seasonal nature of extreme hydrological events in the northeastern United States. J. Hydrometeor., 16, 20652085, https://doi.org/10.1175/JHM-D-14-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gitro, C., M. Evans, and R. Grumm, 2014: Two major heavy rain/flood events in the mid-Atlantic: June 2006 and September 2011. J. Oper. Meteor., 2, 152168, https://doi.org/10.15191/nwajom.2014.0213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., and A. M. Grimm, 2017: The role of synoptic and intraseasonal anomalies on the life cycle of rainfall extremes over South America: Non-summer conditions. Climate Dyn., 49, 313326, https://doi.org/10.1007/s00382-016-3344-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, R., T. Y. Gan, J. Xie, and N. Wang, 2014: Spatiotemporal variability of Alberta’s seasonal precipitation, their teleconnection with large-scale climate anomalies and sea surface temperature. Int. J. Climatol., 34, 28992917, https://doi.org/10.1002/JOC.3883.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and L. M. V. Carvalho, 2012: Spatial–intensity variations in extreme precipitation in the contiguous United States and the Madden–Julian oscillation. J. Climate, 25, 48984913, https://doi.org/10.1175/JCLI-D-11-00278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589, https://doi.org/10.1175/3238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231242, https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, J., and G. C. Hegerl, 2010: Influence of modes of climate variability on global precipitation extremes. J. Climate, 23, 62486262, https://doi.org/10.1175/2010JCLI3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, https://doi.org/10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, https://doi.org/10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., S. A. Changnon, and J. R. Angel, 1994: Climatic aspects of the 1993 Upper Mississippi River Basin flood. Bull. Amer. Meteor. Soc., 75, 811822, https://doi.org/10.1175/1520-0477(1994)075<0811:CAOTUM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, https://doi.org/10.1175/JCLI-D-12-00392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, https://doi.org/10.1175/JCLI-D-13-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, S. L., and R. S. Schumacher, 2014: Ensemble-based analysis of the May 2010 extreme rainfall in Tennessee and Kentucky. Mon. Wea. Rev., 142, 222239, https://doi.org/10.1175/MWR-D-13-00020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, https://doi.org/10.1175/1520-0477-60.2.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K., and Coauthors, 2016: Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Wea. Rev., 144, 16171632, https://doi.org/10.1175/MWR-D-15-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallakpour, I., and G. Villarini, 2016: Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theor. Appl. Climatol., 130, 345363, https://doi.org/10.1007/s00704-016-1881-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., and G. M. Lackmann, 2017: The South Carolina flood of October 2015: Moisture transport analysis and the role of Hurricane Joaquin. J. Hydrometeor., 18, 29732990, https://doi.org/10.1175/JHM-D-16-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/S41612-017-0008-2.

    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering and Medicine, 2016: Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. National Academies Press, 350 pp., https://doi.org/10.17226/21873.

    • Crossref
    • Export Citation
  • National Centers for Environmental Information, 2019: U.S. billion-dollar weather and climate disasters. NOAA, https://www.ncdc.noaa.gov/billions/.

  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?-A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oklahoma Mesonet, 2015: Historic May rains eliminate drought. Oklahoma Mesonet, https://www.mesonet.org/index.php/news/article/historic_may_rains_eliminate_drought.

  • PRISM Climate Group, 2017: PRISM Climate Data. PRISM Climate Group, accessed 10 October 2017, http://prism.oregonstate.edu.

  • Reidmiller, D. R., C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, and B. C. Stewart, Eds., 2018: Impacts, Risks, and Adaptation in the United States. Vol. II, Fourth National Climate Assessment, U.S. Global Change Research Program, 1515 pp., https://doi.org/10.7930/NCA4.2018.

    • Crossref
    • Export Citation
  • Rivera, E. R., F. Dominguez, and C. L. Castro, 2014: Atmospheric rivers and cool season extreme precipitation events in the Verde River basin of Arizona. J. Hydrometeor., 15, 813829, https://doi.org/10.1175/JHM-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, https://doi.org/10.1002/joc.3370010106.

  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saharia, M., P. E. Kirstetter, H. Vergara, J. J. Gourley, and Y. Hong, 2017: Characterization of floods in the United States. J. Hydrol., 548, 524535, https://doi.org/10.1016/j.jhydrol.2017.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, https://doi.org/10.1175/WAF900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, L. J., G. Villarini, and A. A. Bradley, 2019: Evaluation of the skill of North-American Multi-Model Ensemble (NMME) global climate models in predicting average and extreme precipitation and temperature over the continental USA. Climate Dyn., 53, 73817396, https://doi.org/10.1007/s00382-016-3286-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Touma, D., A. M. Michalak, D. L. Swain, and N. S. Diffenbaugh, 2018: Characterizing the spatial scales of extreme daily precipitation in the United States. J. Climate, 31, 80238037, https://doi.org/10.1175/JCLI-D-18-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Fu, A. Kumar, and W. Li, 2010: Intensification of summer rainfall variability in the southeastern United States during recent decades. J. Hydrometeor., 11, 10071018, https://doi.org/10.1175/2010JHM1229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., W.-R. Huang, H.-H. Hsu, and R. R. Gillies, 2015: Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains. Geophys. Res. Lett., 42, 81408146, https://doi.org/10.1002/2015GL065211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Baxter, and K. Harnos, 2016: Regional changes in the interannual variability of U.S. warm season precipitation. J. Climate, 29, 51575173, https://doi.org/10.1175/JCLI-D-14-00803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 21662176, https://doi.org/10.1109/TGRS.2012.2211024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., Y. Deng, and R. X. Black, 2017: A dynamical and statistical characterization of U.S. extreme precipitation events and their associated large-scale meteorological patterns. J. Climate, 30, 13071326, https://doi.org/10.1175/JCLI-D-15-0910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C., E. Kar-Man Chang, H.-M. Kim, M. Zhang, and W. Wang, 2018: Impacts of the Madden–Julian oscillation on storm-track activity, surface air temperature, and precipitation over North America. J. Climate, 31, 61136134, https://doi.org/10.1175/JCLI-D-17-0534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 104 104 27
Full Text Views 24 24 4
PDF Downloads 31 31 4

Synoptic Characteristics of 14-Day Extreme Precipitation Events across the United States

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • 2 School of Meteorology, and Civil and Environmental Engineering, University of Oklahoma, Norman, Oklahoma
  • 3 School of Meteorology, University of Oklahoma, and South Central Climate Adaptation Science Center, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Although significant improvements have been made to the prediction and understanding of extreme precipitation events in recent decades, there is still much to learn about these impactful events on the subseasonal time scale. This study focuses on identifying synoptic patterns and precursors ahead of an extreme precipitation event over the contiguous United States (CONUS). First, we provide a robust definition for 14-day “extreme precipitation events” and partition the CONUS into six different geographic regions to compare and contrast the synoptic patterns associated with events in those regions. Then, several atmospheric variables from ERA-Interim (e.g., geopotential height and zonal winds) are composited to understand the evolution of the atmospheric state before and during a 14-day extreme precipitation event. Common synoptic signals seen during events include significant zonally oriented trough–ridge patterns, an energized subtropical jet stream, and enhanced moisture transport into the affected area. Also, atmospheric-river activity increases in the specific region during these events. Modes of climate variability and lagged composites are then investigated for their potential use in lead-time prediction. Key findings include synoptic-scale anomalies in the North Pacific Ocean and regional connections to modes such as the Pacific–North American pattern and the North Pacific Oscillation. Taken together, our results represent a significant step forward in understanding the evolution of 14-day extreme precipitation events for potential damage and casualty mitigation.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gregory C. Jennrich, gregory.c.jennrich-1@ou.edu

Abstract

Although significant improvements have been made to the prediction and understanding of extreme precipitation events in recent decades, there is still much to learn about these impactful events on the subseasonal time scale. This study focuses on identifying synoptic patterns and precursors ahead of an extreme precipitation event over the contiguous United States (CONUS). First, we provide a robust definition for 14-day “extreme precipitation events” and partition the CONUS into six different geographic regions to compare and contrast the synoptic patterns associated with events in those regions. Then, several atmospheric variables from ERA-Interim (e.g., geopotential height and zonal winds) are composited to understand the evolution of the atmospheric state before and during a 14-day extreme precipitation event. Common synoptic signals seen during events include significant zonally oriented trough–ridge patterns, an energized subtropical jet stream, and enhanced moisture transport into the affected area. Also, atmospheric-river activity increases in the specific region during these events. Modes of climate variability and lagged composites are then investigated for their potential use in lead-time prediction. Key findings include synoptic-scale anomalies in the North Pacific Ocean and regional connections to modes such as the Pacific–North American pattern and the North Pacific Oscillation. Taken together, our results represent a significant step forward in understanding the evolution of 14-day extreme precipitation events for potential damage and casualty mitigation.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gregory C. Jennrich, gregory.c.jennrich-1@ou.edu
Save