• Allan, R., and et al. , 2001: Is there an equatorial Indian Ocean SST dipole independent of the El Niño–Southern Oscillation? CLIVAR Exchanges, No. 6, International CLIVAR Project Office, Southampton, United Kingdom, 18–22, http://eprints.uni-kiel.de/13692/1/Exchanges21.pdf.

  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., R. Murtugudde, and A. J. Busalacchi, 2002: On the potential impact of sea surface salinity observations on ENSO predictions. J. Geophys. Res., 107, 8007, https://doi.org/10.1029/2001JC000834.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Boening, C., J. K. Willis, F. W. Landerer, R. S. Nerem, and J. Fasullo, 2012: The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett., 39, L19602, https://doi.org/10.1029/2012GL053055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, G. J., 2011: A faster water cycle. Science, 332, 430431, https://doi.org/10.1126/science.1205253.

  • Brown, J. N., P. C. McIntosh, M. J. Pook, and J. S. Risbey, 2009: An investigation of the links between ENSO flavors and rainfall processes in southeastern Australia. Mon. Wea. Rev., 137, 37863795, https://doi.org/10.1175/2009MWR3066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and A. Sullivan, 2009: Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705, https://doi.org/10.1029/2009GL037604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, https://doi.org/10.1175/2011JCLI4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, https://doi.org/10.1175/JCLI-D-11-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., H. Qin, G. Chen, and H. Xue, 2019: Ocean salinity as a precursor of summer rainfall over the East Asian monsoon region. J. Climate, 32, 56595676, https://doi.org/10.1175/JCLI-D-18-0756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, M., A. Pitman, and J. Evans, 2015: Diagnosing the seasonal land–atmosphere correspondence over northern Australia: Dependence on soil moisture state and correspondence strength definition. Hydrol. Earth Syst. Sci., 19, 34333447, https://doi.org/10.5194/hess-19-3433-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and I. Boyer-Souchet, 2012: Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett., 39, L10803, https://doi.org/10.1029/2012GL052014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., A. J. Pitman, and F. T. Cruz, 2011: Coupled atmospheric and land surface dynamics over southeast Australia: A review, analysis and identification of future research priorities. Int. J. Climatol., 31, 17581772, https://doi.org/10.1002/joc.2206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., X. Meng, and M. F. McCabe, 2017: Land surface albedo and vegetation feedbacks enhanced the millennium drought in south-east Australia. Hydrol. Earth Syst. Sci., 21, 409422, https://doi.org/10.5194/hess-21-409-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., C. Boening, F. W. Landerer, and R. S. Nerem, 2013: Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett., 40, 43684373, https://doi.org/10.1002/grl.50834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, H., and M. Zhang, 2016: Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep., 5, 18018, https://doi.org/10.1038/srep18018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S.-P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., J. Benthuysen, N. Zhang, and D. Slawinski, 2015: Freshening anomalies in the Indonesian Throughflow and impacts on the Leeuwin Current during 2010–2011. Geophys. Res. Lett., 42, 85558562, https://doi.org/10.1002/2015GL065848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, https://doi.org/10.1016/J.DSR.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, https://doi.org/10.1038/ngeo2247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackert, E., J. Ballabrera-Poy, A. J. Busalacchi, R.-H. Zhang, and R. Murtugudde, 2011: Impact of sea surface salinity assimilation on coupled forecasts in the tropical Pacific. J. Geophys. Res., 116, C05009, https://doi.org/10.1029/2010JC006708.

    • Search Google Scholar
    • Export Citation
  • Hackert, E., R. M. Kovach, A. J. Busalacchi, and J. Ballabrera-Poy, 2019: Impact of Aquarius and SMAP satellite sea surface salinity observations on coupled El Niño/Southern Oscillation forecasts. J. Geophys. Res. Oceans, 124, 45464556, https://doi.org/10.1029/2019JC015130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, J., and A. Goonetilleke, 2013: Building community resilience – Learning from the 2011 floods in Southeast Queensland, Australia. Proc. Eighth Annual Conf. of International Institute Infrastructure, Renewal and Reconstruction (IIIRR 2012) International Conf. on Disaster Management (IIIRR 2012), Kumamoto University, Kumamoto, 51–60.

  • Helm, K. P., N. L. Bindoff, and J. A. Church, 2010: Changes in the global hydrological-cycle inferred from ocean salinity. Geophys. Res. Lett., 37, L18701, https://doi.org/10.1029/2010GL044222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holgate, C. M., A. I. J. M. Van Dijk, J. P. Evans, and A. J. Pitman, 2019: The importance of the one-dimensional assumption in soil moisture–rainfall depth correlation at varying spatial scales. J. Geophys. Res. Atmos., 124, 29642975, https://doi.org/10.1029/2018JD029762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, C., 2012: Final report. Queensland Floods Commission of Inquiry, 658 pp., http://www.floodcommission.qld.gov.au/publications/final-report/.

  • Hong, C.-C., T. Li, LinHo, and Y.-C Chen, 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 35633576, https://doi.org/10.1175/2010JCLI3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Suga, N. Shikama, and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586, https://doi.org/10.1007/s10872-009-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotelling, H., 1931: The generalization of Student’s ratio. Ann. Math. Stat., 2, 360378, https://doi.org/10.1214/aoms/1177732979.

  • Huang, B., and et al. , 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550567, https://doi.org/10.1175/2008JCLI2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, https://doi.org/10.1007/s00382-013-1961-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kido, S., and T. Tozuka, 2017: Salinity variability associated with the positive Indian Ocean dipole and its impact on the upper ocean temperature. J. Climate, 30, 78857907, https://doi.org/10.1175/JCLI-D-17-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kido, S., T. Tozuka, and W. Han, 2019: Anatomy of salinity anomalies associated with the positive Indian Ocean Dipole. J. Geophys. Res. Oceans, 124, 81168139, https://doi.org/10.1029/2019JC015163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., M. G. Donat, L. V. Alexander, and D. J. Karoly, 2015: The ENSO–Australian rainfall teleconnection in reanalysis and CMIP5. Climate Dyn., 44, 26232635, https://doi.org/10.1007/s00382-014-2159-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koul, V., A. Parekh, G. Srinivas, R. Kakatkar, J. S. Chowdary, and C. Gnanaseelan, 2018: Role of ocean initial conditions to diminish dry bias in the seasonal prediction of Indian summer monsoon rainfall: A case study using climate forecast system. J. Adv. Model. Earth Syst., 10, 603616, https://doi.org/10.1002/2017MS001129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., R. P. Allan, F. Zwiers, D. M. Lawrence, and P. A. Dirmeyer, 2015: Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophys. Res. Lett., 42, 10 86710 875, https://doi.org/10.1002/2015GL066858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lestari, R. K., and T. Y. Koh, 2016: Statistical evidence for asymmetry in ENSO–IOD interactions. Atmos.–Ocean, 54, 498504, https://doi.org/10.1080/07055900.2016.1211084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Liang, Y. Tang, C. Dong, D. Chen, X. Liu, and W. Jin, 2016: A new dipole index of the salinity anomalies of the tropical Indian Ocean. Sci. Rep., 6, 24260, https://doi.org/10.1038/srep24260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and A. P. Barros, 2013: Atmospheric moisture budget and its regulation of the summer precipitation variability over the southeastern United States. Climate Dyn., 41, 613631, https://doi.org/10.1007/s00382-013-1697-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016a: North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv., 2, e1501588, https://doi.org/10.1126/sciadv.1501588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016b: Implications of North Atlantic sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Climate, 29, 31433159, https://doi.org/10.1175/JCLI-D-15-0520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., and H. H. Hendon, 2015: Understanding and predicting the strong southern annular mode and its impact on the record wet east Australian spring 2010. Climate Dyn., 44, 28072824, https://doi.org/10.1007/s00382-014-2400-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E. P., H. H. Hendon, J. M. Arblaster, C. Chung, A. F. Moise, P. Hope, G. Young, and M. Zhao, 2016: Interaction of the recent 50 year SST trend and La Niña 2010: Amplification of the southern annular mode and Australian springtime rainfall. Climate Dyn., 47, 22732291, https://doi.org/10.1007/s00382-015-2963-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1988: Deducing the wind from vorticity and divergence. Mon. Wea. Rev., 116, 8693, https://doi.org/10.1175/1520-0493(1988)116<0086:DTWFVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 19982004, https://doi.org/10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, https://doi.org/10.1175/JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCCARF, 2011: Protecting structures from floodwater. National Climate Change Adaptation Research Facility, 2 pp., https://www.nccarf.edu.au/sites/default/files/attached_files_publications/ProtectingStructuresfromFloodwater-factsheet_0.pdf.

  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst., 111–112, 139156, https://doi.org/10.1016/j.jmarsys.2012.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepler, A., B. Timbal, C. Rakich, and A. Coutts-Smith, 2014: Indian Ocean dipole overrides ENSO’s influence on cool season rainfall across the eastern seaboard of Australia. J. Climate, 27, 38163826, https://doi.org/10.1175/JCLI-D-13-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., and G. C. Hegerl, 2017: Strengthening contrast between precipitation in tropical wet and dry regions. Geophys. Res. Lett., 44, 365373, https://doi.org/10.1002/2016GL071194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queenland Government, 2015: 2010–11 flood impacts. accessed 13 May 2019, https://www.qld.gov.au/environment/pollution/management/disasters/flood-impacts.

  • Rast, M., J. Johannessen, and W. Mauser, 2014: Review of understanding of Earth’s hydrological cycle: Observations, theory and modelling. Surv. Geophys., 35, 491513, https://doi.org/10.1007/s10712-014-9279-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., P. R. Briggs, V. Haverd, E. A. King, M. Paget, and C. M. Trudinger, 2009: Australian Water Availability Project (AWAP): CSIRO marine and atmospheric research component: Final report for phase 3. CAWCR Tech. Rep. 13, 67 pp.

  • Raval, A., and V. Ramanathan, 1989: Observational determination of the greenhouse effect. Nature, 342, 758761, https://doi.org/10.1038/342758a0.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and et al. , 2014: Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv. Geophys., 35, 681722, https://doi.org/10.1007/s10712-013-9244-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. Mcphaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seelanki, V., P. Sreenivas, and K. V. S. R. Prasad, 2018: Impact of Aquarius sea-surface salinity assimilation in improving the ocean analysis over Indian Ocean. Mar. Geod., 41, 144158, https://doi.org/10.1080/01490419.2017.1422817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., and T. Delcroix, 2011: Estimating the effects of ENSO upon the observed freshening trends of the western tropical Pacific Ocean. Geophys. Res. Lett., 38, L21607, https://doi.org/10.1029/2011GL049636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srokosz, M., and C. Banks, 2019: Salinity from space. Weather, 74, 38, https://doi.org/10.1002/wea.3161.

  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q., Y. Du, Y. Zhang, M. Feng, J. S. Chowdary, J. Chi, S. Qiu, and W. Yu, 2019: Evolution of sea surface salinity anomalies in the southwestern tropical Indian Ocean during 2010–2011 influenced by a negative IOD event. J. Geophys. Res. Oceans, 124, 34283445, https://doi.org/10.1029/2018JC014580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. Sen Gupta, H. H. Hendon, C. C. Ummenhofer, and M. H. England, 2011: The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J. Climate, 24, 37343747, https://doi.org/10.1175/2011JCLI3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Ummenhofer, C. C., M. H. England, P. C. Mclntosh, G. A. Meyers, M. J. Pook, J. S. Risbey, A. Sen Gupta, and A. S. Taschetto, 2009: What causes southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., and et al. , 2011: Indian and Pacific Ocean influences on southeast Australian drought and soil moisture. J. Climate, 24, 13131336, https://doi.org/10.1175/2010JCLI3475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Sen Gupta, M. H. England, A. S. Taschetto, P. R. Briggs, and M. R. Raupach, 2015: How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event? Geophys. Res. Lett., 42, 99429951, https://doi.org/10.1002/2015GL065948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., 2006: Sea surface salinity constrains rainfall estimates over tropical oceans. Geophys. Res. Lett., 33, L15605, https://doi.org/10.1029/2006GL026582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, https://doi.org/10.1029/2010JC006937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, S. A. Josey, T. Lee, A. Kumar, C. Wen, and Y. Xue, 2017: The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J. Climate, 30, 38293852, https://doi.org/10.1175/JCLI-D-16-0479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., H. H. Hendon, Y. Yin, and O. Alves, 2016: Variations of upper-ocean salinity associated with ENSO from PEODAS reanalyses. J. Climate, 29, 20772094, https://doi.org/10.1175/JCLI-D-15-0650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., H. Zhang, and I. Dharssi, 2019: On the soil moisture memory and influence on coupled seasonal forecasts over Australia. Climate Dyn., 52, 70857109, https://doi.org/10.1007/s00382-018-4566-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhi, H., R. H. Zhang, P. Lin, and S. Shi, 2019: Effects of salinity variability on recent El Niño events. Atmosphere, 10, 475, https://doi.org/10.3390/ATMOS10080475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, R. H. Zhang, Z. Z. Hu, A. Kumar, M. A. Balmaseda, L. Marx, and J. L. Kinter, 2014: Salinity anomaly as a trigger for ENSO events. Sci. Rep., 4, 6821, https://doi.org/10.1038/SREP06821.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 369 369 19
Full Text Views 127 127 15
PDF Downloads 130 130 19

Near-Surface Salinity Reveals the Oceanic Sources of Moisture for Australian Precipitation through Atmospheric Moisture Transport

View More View Less
  • 1 Institute for Marine and Antarctic Studies, University of Tasmania, and ARC Centre of Excellence for Climate System Science, Hobart, Tasmania, Australia
  • | 2 Institute for Marine and Antarctic Studies, University of Tasmania, and ARC Centre of Excellence for Climate Extremes, and CSIRO Oceans and Atmosphere, and Australian Antarctic Program Partnership, Hobart, Tasmania, Australia
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, and ARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
  • | 4 Institute for Marine and Antarctic Studies, University of Tasmania, and ARC Centre of Excellence for Climate Extremes, Hobart, Tasmania, Australia
  • | 5 CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, Crawley, Western Australia, and Centre for Southern Hemisphere Oceans Research, CSIRO, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.

Corresponding author: Saurabh Rathore, saurabh.rathore@utas.edu.au

Abstract

The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.

Corresponding author: Saurabh Rathore, saurabh.rathore@utas.edu.au
Save