• Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008: Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res., 113, D07108, https://doi.org/10.1029/2007JD009291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, https://doi.org/10.1256/qj.03.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115, D14113, https://doi.org/10.1029/2009JD013389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and J. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, https://doi.org/10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and J. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 22952318, https://doi.org/10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., and S. Weng, 1999: Interannual and intraseasonal variations in monsoon depressions and their westward-propagating predecessors. Mon. Wea. Rev., 127, 10051020, https://doi.org/10.1175/1520-0493(1999)127<1005:IAIVIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J., L. Wang, T. Li, and B. Wu, 2020: Can reanalysis products with only surface variables assimilated capture Madden–Julian Oscillation characteristics? Int. J. Climatol., 40, 12791293, https://doi.org/10.1002/joc.6270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., J. J. Benedict, N. P. Klingaman, S. J. Woolnough, and D. A. Randall, 2016: Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 121, 83508373, https://doi.org/10.1002/2016JD025098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61, 10041023, https://doi.org/10.1175/1520-0469(2004)061<1004:OMLTVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and L. Tao, 2006: Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett., 33, L03705, https://doi.org/10.1029/2005GL025074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., W. Wang, Y. Zhu, H. L. Ren, X. Jia, and T. Shinoda, 2018: Impacts of different cumulus schemes on the pathways through which SST provides feedback to the Madden–Julian oscillation. J. Climate, 31, 55595579, https://doi.org/10.1175/JCLI-D-17-0432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., J. Yang, B. Wang, S. Zhou, D. Gong, and S.-J. Kim, 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Climate Dyn., 51, 44214437, https://doi.org/10.1007/s00382-017-3526-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., N. P. Klingaman, C. A. DeMott, and P.-C. Hsu, 2018: Diagnosing ocean feedbacks to the BSISO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 124, 146170, https://doi.org/10.1029/2018JD029303.

    • Search Google Scholar
    • Export Citation
  • Halkides, D. J., D. E. Waliser, T. Lee, D. Menemenlis, and B. Guan, 2015: Quantifying the processes controlling intraseasonal mixed-layer temperature variability in the tropical Indian Ocean. J. Geophys. Res. Oceans, 120, 692715, https://doi.org/10.1002/2014JC010139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hsu, P., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P., T. Li, and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aquaplanet general circulation model. J. Climate, 27, 87478760, https://doi.org/10.1175/JCLI-D-14-00148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, https://doi.org/10.1175/JCLI-D-12-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., and S. Yang, 2013: Impact of the quasi-biweekly oscillation over the western North Pacific on East Asian subtropical monsoon during early summer. J. Geophys. Res. Atmos., 118, 44214434, https://doi.org/10.1002/JGRD.50422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2017: Key processes for the eastward propagation of the Madden–Julian Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755770, https://doi.org/10.1002/2016JD025955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, https://doi.org/10.1175/2008JCLI2368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, https://doi.org/10.3402/tellusa.v32i1.10476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., P. K. Jayakumar, J. Sheng, N. Surgi, and A. Kumar, 1985: Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42, 364375, https://doi.org/10.1175/1520-0469(1985)042<0364:DCOTTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, https://doi.org/10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and C. H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465472, https://doi.org/10.1175/1520-0442(1997)010<0465:MOSTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., T. Li, and B. Zheng, 2018: Characteristic interdecadal change of quasi-biweekly and intraseasonal oscillations of summer convection over the South China Sea and the Western Pacific. Dyn. Atmos. Oceans, 83, 4152, https://doi.org/10.1016/j.dynatmoce.2018.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., 1985: Actions of summer monsoon troughs (ridges) and tropical cyclones and the moving CISK mode. Sci. Sin., 28B, 11971206.

  • Li, C., X. Jia, J. Ling, W. Zhou, and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, https://doi.org/10.1007/s00382-008-0455-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 1997: Air–sea interactions of relevance to the ITCZ: Analysis of coupled instabilities and experiments in a hybrid coupled GCM. J. Atmos. Sci., 54, 134147, https://doi.org/10.1175/1520-0469(1997)054<0134:ASIORT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285314, https://doi.org/10.3319/TAO.2005.16.2.285(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., L. Wang, M. Peng, B. Wang, C. Zhang, W. Lau, and H. C. Kuo, 2018: A paper on the tropical intraseasonal oscillation published in 1963 in a Chinese journal. Bull. Amer. Meteor. Soc., 99, 17651779, https://doi.org/10.1175/BAMS-D-17-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2014: A mechanism for explaining the maximum intraseasonal oscillation center over the western North Pacific. J. Climate, 27, 958968, https://doi.org/10.1175/JCLI-D-12-00797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., J. Yang, D. Zhang, and B. Wang, 2014: Roles of synoptic to quasi-biweekly disturbances in generating the summer 2003 heavy rainfall in East China. Mon. Wea. Rev., 142, 886904, https://doi.org/10.1175/MWR-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, https://doi.org/10.1073/pnas.0903367106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, https://doi.org/10.1175/JCLI-3212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 23882402, https://doi.org/10.1175/JCLI3395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, M., and Coauthors, 2012: Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons. Part I: A GHRSST multi-product ensemble (GMPE). Deep-Sea Res. II, 77–80, 2130, https://doi.org/10.1016/j.dsr2.2012.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Characteristics of 4-to-20-day-period disturbances observed in the equatorial Pacific during the TOGA COARE IOP. J. Meteor. Soc. Japan Ser. II, 73, 353377, https://doi.org/10.2151/JMSJ1965.73.2B_353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian Oscillation. J. Climate, 22, 30313046, https://doi.org/10.1175/2008JCLI2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., Y. Du, Z. Chen, and C. Wang, 2019: Impact of the quasi-biweekly oscillation on the super typhoon tracks in winter over the western North Pacific. Climate Dyn., 53, 793804, https://doi.org/10.1007/s00382-019-04614-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., X. Fu, and W. Lu, 2009: Moisture structure of the quasi-biweekly mode revealed by AIRS in western Pacific. Adv. Atmos. Sci., 26, 513522, https://doi.org/10.1007/s00376-009-0513-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin waves. J. Atmos. Sci., 45, 20512065, https://doi.org/10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 1994: On the annual cycle in the tropical eastern central Pacific. J. Climate, 7, 19261942, https://doi.org/10.1175/1520-0442(1994)007<1926:OTACIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, https://doi.org/10.1007/BF01026810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and T. Li, 2020: Effect of vertical moist static energy advection on MJO eastward propagation: Sensitivity to analysis domain. Climate Dyn., 54, 20292039, https://doi.org/10.1007/s00382-019-05101-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., X. Yang, J. Fang, X. Sun, and X. Ren, 2018: Role of air–sea interaction in the 30–60-day boreal summer intraseasonal oscillation over the western North Pacific. J. Climate, 31, 16531680, https://doi.org/10.1175/JCLI-D-17-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Chen, and R. Huang, 2016: Different characteristics of the quasi-biweekly oscillation over the South China Sea in two boreal summer stages. Theor. Appl. Climatol., 126, 113, https://doi.org/10.1007/s00704-015-1550-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, https://doi.org/10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, https://doi.org/10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y. B., S. J. Chen, I. L. Zhang, and Y. L. Huang, 1963: A preliminary statistic and synoptic study about the basic currents over southeastern Asia and the initiation of typhoon (in Chinese). Acta Meteor. Sin., 33, 206217.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., T. Li, and K. Fan, 2017: The weakened intensity of the atmospheric quasi-biweekly oscillation over the western North Pacific during late summer around the late 1990s. J. Climate, 30, 98079826, https://doi.org/10.1175/JCLI-D-16-0759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, K., and R. Wu, 2015: Contrast of local air–sea relationships between 10–20-day and 30–60-day intraseasonal oscillations during May–September over the South China Sea and western North Pacific. Climate Dyn., 45, 34413459, https://doi.org/10.1007/s00382-015-2549-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, H., P. Hsu, and Y. Qian, 2018: Close linkage between quasi-biweekly oscillation and tropical cyclone intensification over the western North Pacific. Atmos. Sci. Lett., 19, e826, https://doi.org/10.1002/asl.826.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 76 76 56
Full Text Views 29 29 22
PDF Downloads 33 33 21

Structures and Northward Propagation of the Quasi-Biweekly Oscillation in the Western North Pacific

View More View Less
  • 1 Center for Ocean and Climate Research, First Institute of Oceanography, Ministry of Natural Resources, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 2 School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Campus, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
  • 3 National Marine Data and Information Service, Tianjin, China
© Get Permissions
Restricted access

Abstract

This study investigates the northward-propagating quasi-biweekly oscillation (QBWO) in the western North Pacific by examining the composite meridional structures. Using newly released reanalysis and remote sensing data, the northward propagation is understood in terms of the meridional contrasts in the planetary boundary layer (PBL) moisture and the column-integrated moist static energy (MSE). The meridional contrast in the PBL moisture, with larger values north of the convection center, is predominantly attributed to the moisture convergence associated with barotropic vorticity anomalies. A secondary contribution comes from the meridional moisture advection, for which advections by mean and perturbation winds are almost equally important. The meridional contrast in the MSE tendency, due to the recharge in the front of convection and discharge in the rear of convection, is jointly contributed by the meridional and vertical MSE advections. The meridional MSE advection mainly depends on the moisture processes particularly in the PBL, and the vertical MSE advection largely results from the advection of the mean MSE by vertical velocity anomalies, wherein the upper-troposphere ascending motion related to the stratiform heating in the rear of the convection plays the major role. In addition, partial feedback from sea surface temperature (SST) anomalies is evaluated on the basis of MSE budget analysis. SST anomalies tend to enhance the surface turbulent heat fluxes ahead of the convention center and suppress them behind the convention center, thus positively contributing approximately 20% of the meridional contrast in the MSE tendency.

Corresponding author: Dr. Kuiping Li, likp@fio.org.cn

Abstract

This study investigates the northward-propagating quasi-biweekly oscillation (QBWO) in the western North Pacific by examining the composite meridional structures. Using newly released reanalysis and remote sensing data, the northward propagation is understood in terms of the meridional contrasts in the planetary boundary layer (PBL) moisture and the column-integrated moist static energy (MSE). The meridional contrast in the PBL moisture, with larger values north of the convection center, is predominantly attributed to the moisture convergence associated with barotropic vorticity anomalies. A secondary contribution comes from the meridional moisture advection, for which advections by mean and perturbation winds are almost equally important. The meridional contrast in the MSE tendency, due to the recharge in the front of convection and discharge in the rear of convection, is jointly contributed by the meridional and vertical MSE advections. The meridional MSE advection mainly depends on the moisture processes particularly in the PBL, and the vertical MSE advection largely results from the advection of the mean MSE by vertical velocity anomalies, wherein the upper-troposphere ascending motion related to the stratiform heating in the rear of the convection plays the major role. In addition, partial feedback from sea surface temperature (SST) anomalies is evaluated on the basis of MSE budget analysis. SST anomalies tend to enhance the surface turbulent heat fluxes ahead of the convention center and suppress them behind the convention center, thus positively contributing approximately 20% of the meridional contrast in the MSE tendency.

Corresponding author: Dr. Kuiping Li, likp@fio.org.cn
Save