• Affholder, M., and F. Valiron, 2001: Descriptive Physical Oceanography. 1st ed. CRC Press, 370 pp.

  • Alexeev, V. A., and C. H. Jackson, 2012: Polar amplification: Is atmospheric heat transport important? Climate Dyn., 41, 533547, https://doi.org/10.1007/s00382-012-1601-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barry, R. G., M. C. Serreze, J. A. Maslanik, and R. H. Preller, 1993: The Arctic sea ice-climate system: Observations and modeling. Rev. Geophys., 31, 397422, https://doi.org/10.1029/93RG01998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17, 36233632, https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, https://doi.org/10.1175/JCLI3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Export Citation
  • Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global Planet. Change, 68, 149163, https://doi.org/10.1016/j.gloplacha.2009.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, S. M. S., and K. P. Shine, 2012: Outgoing longwave radiation due to directly transmitted surface emission. J. Atmos. Sci., 69, 18651870, https://doi.org/10.1175/JAS-D-11-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., 2010: Geographic muting of changes in the Arctic sea ice cover. Geophys. Res. Lett., 37, L16501, https://doi.org/10.1029/2010GL043741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., 2012: Factors controlling the bifurcation structure of sea ice retreat. J. Geophys. Res., 117, D01111, https://doi.org/10.1029/2011JD016164.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., and J. S. Wettlaufer, 2009: Nonlinear threshold behaviour during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. USA, 106, 2832, https://doi.org/10.1073/pnas.0806887106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, https://doi.org/10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and B. E. J. Rose, 2011: Climate determinism revisted: Multiple equilibria in a complex climate model. J. Climate, 24, 9921012, https://doi.org/10.1175/2010JCLI3580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, T. Ito, and D. McGee, 2018: Linking glacial–interglacial states to multiple equilibria of climate. Geophys. Res. Lett., 45, 91609170, https://doi.org/10.1029/2018GL077019.

    • Search Google Scholar
    • Export Citation
  • Forget, G., and D. Ferreira, 2019: Global ocean heat transport dominated by heat export from the tropical Pacific. Nat. Geosci., 12, 351354, https://doi.org/10.1038/s41561-019-0333-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heorton, H. D. B. S., N. Radia, and D. L. Feltham, 2017: A model of sea ice formation in leads and polynyas. J. Climate, 47, 17011718, https://doi.org/10.1175/JPO-D-16-0224.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2019: Thicker clouds and accelerated Arctic sea ice decline: The atmosphere–sea ice interactions in spring. Geophys. Res. Lett., 46, 69806989, https://doi.org/10.1029/2019GL082791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2016: Daily mean incident solar radiation over the last 3 Myr—Data set and MATLAB code. Accessed August 2019, http://www.people.fas.harvard.edu/~phuybers/Mfiles/Toolbox/inso.m.

  • Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of summer ice-free Arctic? Geophys. Res. Lett., 43, 91139120, https://doi.org/10.1002/2016GL070067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2015: Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985–2012. J. Geophys. Res., 120, 93749389, https://doi.org/10.1002/2015JD023264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., M. Song, R. M. Horton, and Y. Hu, 2013: Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl. Acad. Sci. USA, 110, 12 57112 576, https://doi.org/10.1073/pnas.1219716110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., H. Yang, C. He, and Y. Zhao, 2016: A theory for Bjerknes compensation: The role of climate feedback. J. Climate, 29, 191208, https://doi.org/10.1175/JCLI-D-15-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460, https://doi.org/10.1175/2010JCLI3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzocchi, A., and M. F. Jansen, 2017: Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett., 44, 62866295, https://doi.org/10.1002/2017GL073936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P. Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, https://doi.org/10.5194/tc-6-1383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734752, https://doi.org/10.1175/JCLI-D-11-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, https://doi.org/10.1029/JC076i006p01550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., and Coauthors, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52, 185217, https://doi.org/10.1002/2013RG000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., and J. A. Coakley, 1979: Differences between seasonal and mean annual energy balance model calculations of climate and climate sensitivity. J. Atmos. Sci., 36, 11891204, https://doi.org/10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., R. F. Cahalan, and J. A. Coakley, 1981: Energy balance climate models. Rev. Geophys. Space Phys., 19, 91121, https://doi.org/10.1029/RG019i001p00091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., A. Jahn, M. M. Holland, E. C. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geosci. Model Dev., 9, 34273446, https://doi.org/10.5194/gmd-9-3427-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nummelin, A., C. Li, and P. J. Hezel, 2017: Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean. Geophys. Res. Lett., 44, 18991908, https://doi.org/10.1002/2016GL071333.

    • Search Google Scholar
    • Export Citation
  • Outten, S., I. Esau, and O. H. Otterå, 2018: Bjerknes compensation in the CMIP5 climate models. J. Climate, 31, 87458760, https://doi.org/10.1175/JCLI-D-18-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., and R. L. Jacob, 2004: Factors that inhibit snowball Earth simulation. Paleoceanography, 19, PA4021, https://doi.org/10.1029/2004PA001056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., 2015: Stable “Waterbelt” climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth. J. Geophys. Res. Atmos., 120, 14041423, https://doi.org/10.1002/2014JD022659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843, https://doi.org/10.1175/2009JAS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and D. Ferreira, 2013: Ocean heat transport and water vapour greenhouse in a warm equable climate: A new look at the low gradient paradox. J. Climate, 26, 21172136, https://doi.org/10.1175/JCLI-D-11-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climatic model based on the energy balance of the Earth–atmosphere system. J. Appl. Meteor., 8, 392400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability and comparisons to the Antarctic. Ann. N. Y. Acad. Sci., 1436, 3653, https://doi.org/10.1111/nyas.13856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, D. W. J. Thompson, and M. H. England, 2012: Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Climate, 25, 54515469, https://doi.org/10.1175/JCLI-D-11-00367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. A., P. J. Rasch, and B. E. J. Rose, 2017: Increased ocean heat convergence into the high latitudes with CO2 doubling enhances polar-amplified warming Geophys. Res. Lett., 44, 10 58310 591, https://doi.org/10.1002/2017GL074561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., 1992: A toy model linking atmospheric thermal radiation and sea ice growth. J. Geophys. Res., 97, 94019410, https://doi.org/10.1029/92JC00695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, https://doi.org/10.1175/JCLI-D-12-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valero, F. P. J., P. Minnis, S. K. Pope, A. Bucholtz, B. C. Bush, D. R. Doelling, W. L. Smith, and X. Dong, 2000: Absorption of solar radiation by the atmosphere as determined using satellite, aircraft, and surface data during the Atmospheric Radiation measurement Enhanced Shortwave Experiment (ARESE). J. Geophys. Res., 105, 47434758, https://doi.org/10.1029/1999JD901063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J. W., and I. Eisenman, 2015: How climate model complexity influences sea ice stability. J. Climate, 28, 39984014, https://doi.org/10.1175/JCLI-D-14-00654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 28752889, https://doi.org/10.1175/1520-0442(2003)016<2875:OTCIOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, https://doi.org/10.1017/S0954102004002238.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 53 53 21
Full Text Views 10 10 7
PDF Downloads 16 16 11

Impacts of Oceanic and Atmospheric Heat Transports on Sea Ice Extent

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • 2 Centre for Polar Observation and Modelling, Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

Climate-model biases in ocean heat transport (OHT) have been proposed as a major contributor to uncertainties in projections of sea ice extent. To better understand the impact of OHT on sea ice extent and compare it to that of atmospheric heat transport (AHT), an idealized, zonally averaged energy balance model (EBM) is developed. This is distinguished from previous EBM work by coupling a diffusive mixed layer OHT and a prescribed OHT contribution, with an atmospheric EBM and a reduced-complexity sea ice model. The ice-edge latitude is roughly linearly related to the convergence of each heat transport component, with different sensitivities depending on whether the ice cover is perennial or seasonal. In both regimes, Bjerknes compensation (BC) occurs such that the response of AHT partially offsets the impact of changing OHT. As a result, the effective sensitivity of ice-edge retreat to increasing OHT is only ~2/3 of the actual sensitivity (i.e., eliminating the BC effect). In the perennial regime, the sensitivity of the ice edge to OHT is about twice that to AHT, while in the seasonal regime they are similar. The ratio of sensitivities is, to leading order, determined by atmospheric longwave feedback parameters in the perennial regime. Here, there is no parameter range in which the ice edge is more sensitive to AHT than OHT.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Jake Aylmer, j.r.aylmer@pgr.reading.ac.uk

Abstract

Climate-model biases in ocean heat transport (OHT) have been proposed as a major contributor to uncertainties in projections of sea ice extent. To better understand the impact of OHT on sea ice extent and compare it to that of atmospheric heat transport (AHT), an idealized, zonally averaged energy balance model (EBM) is developed. This is distinguished from previous EBM work by coupling a diffusive mixed layer OHT and a prescribed OHT contribution, with an atmospheric EBM and a reduced-complexity sea ice model. The ice-edge latitude is roughly linearly related to the convergence of each heat transport component, with different sensitivities depending on whether the ice cover is perennial or seasonal. In both regimes, Bjerknes compensation (BC) occurs such that the response of AHT partially offsets the impact of changing OHT. As a result, the effective sensitivity of ice-edge retreat to increasing OHT is only ~2/3 of the actual sensitivity (i.e., eliminating the BC effect). In the perennial regime, the sensitivity of the ice edge to OHT is about twice that to AHT, while in the seasonal regime they are similar. The ratio of sensitivities is, to leading order, determined by atmospheric longwave feedback parameters in the perennial regime. Here, there is no parameter range in which the ice edge is more sensitive to AHT than OHT.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Jake Aylmer, j.r.aylmer@pgr.reading.ac.uk
Save