• Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the Southwest during the North American monsoon. Mon. Wea. Rev., 137, 8398, https://doi.org/10.1175/2008MWR2502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., D. J. Karoly, and K. J. Walsh, 2014: Future Australian severe thunderstorm environments. Part II: The influence of a strongly warming climate on convective environments. J. Climate, 27, 38483868, https://doi.org/10.1175/JCLI-D-13-00426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkiđija, S., and Ž. Fuchs, 2013: Precipitation correlation between convective available potential energy, convective inhibition and saturation fraction in middle latitudes. Atmos. Res., 124, 170180, https://doi.org/10.1016/j.atmosres.2012.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., C. Hauck, N. Kalthoff, and C. Kottmeier, 2011: Soil moisture impacts on convective indices and precipitation over complex terrain. Meteor. Z., 20, 185197, https://doi.org/10.1127/0941-2948/2011/0216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2018: Dependence of estimated precipitation frequency and intensity on data resolution. Climate Dyn., 50, 36253647, https://doi.org/10.1007/s00382-017-3830-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and A. Dai, 2019: Precipitation characteristics in the Community Atmosphere Model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst., 11, 23522374, https://doi.org/10.1029/2018MS001536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, and Y. Zhang, 2019: Projected changes in daily variability and seasonal cycle of near-surface air temperature over the globe during the 21st century. J. Climate, 32, 85378561, https://doi.org/10.1175/JCLI-D-19-0438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., A. Dai, Y. Zhang, and K. L. Rasmussen, 2020: Changes in convective available potential energy and convective inhibition under global warming. J. Climate, 33, 20252050, https://doi.org/10.1175/JCLI-D-19-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14, 10921111, https://doi.org/10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Dai, A., X. Lin, and K. L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744, https://doi.org/10.1007/s00382-007-0260-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., R. M. Rasmussen, C. Liu, K. Ikeda, and A. F. Prein, 2017: A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dyn., https://doi.org/10.1007/s00382-017-3787-6.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726, https://doi.org/10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., and D. A. Randall, 2004: Observed variations of tropical convective available potential energy. J. Geophys. Res., 109, D02102, https://doi.org/10.1029/2003JD003784.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, https://doi.org/10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316, https://doi.org/10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, https://doi.org/10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2011: ERA-Interim. Accessed 1 December 2018, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim.

  • Ellis, T. D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, https://doi.org/10.1029/2008GL036728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, https://doi.org/10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holley, D. M., S. R. Dorling, C. J. Steele, and N. Earl, 2014: A climatology of convective available potential energy in Great Britain. Int. J. Climatol., 34, 38113824, https://doi.org/10.1002/joc.3976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., P. Yan, X. Xiao, J. Zhu, X. Tang, A. Huang, and J. Cheng, 2019: The tri-pole relation among daily mean temperature, atmospheric moisture and precipitation intensity over China. Global Planet. Change, 179, 19, https://doi.org/10.1016/j.gloplacha.2019.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and H.-T. Wu, 2007: Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol., 27, 979988, https://doi.org/10.1002/joc.1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett., 40, 31633169, https://doi.org/10.1002/grl.50420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-M., and H.-R. Byun, 2011: Distribution of convective energy at upper level in South Korea and the possibility of artificial showery rain caused by activated CAPE. Theor. Appl. Climatol., 105, 537551, https://doi.org/10.1007/s00704-011-0408-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S.-C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, https://doi.org/10.1029/2009GL040218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, https://doi.org/10.1175/JCLI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J., and W. Frank, 1999: Relationships between stability and monsoon convection. J. Atmos. Sci., 56, 2436, https://doi.org/10.1175/1520-0469(1999)056<0024:RBSAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monkam, D., 2002: Convective available potential energy (CAPE) in Northern Africa and tropical Atlantic and study of its connections with rainfall in Central and West Africa during summer 1985. Atmos. Res., 62, 125147, https://doi.org/10.1016/S0169-8095(02)00006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010a: Sensitivity of monthly convective precipitation to environmental conditions. J. Climate, 23, 166188, https://doi.org/10.1175/2009JCLI2792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010b: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614473, https://doi.org/10.1175/2010JCLI2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Pendergrass, A. G., and D. L. Hartmann, 2014a: Two modes of change of the distribution of rain. J. Climate, 27, 83578371, https://doi.org/10.1175/JCLI-D-14-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014b: Changes in the distribution of rain frequency and intensity in response to global warming. J. Climate, 27, 83728383, https://doi.org/10.1175/JCLI-D-14-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2017: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., https://doi.org/10.1007/s00382-017-4000-7.

    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015a: The effect of global warming on severe thunderstorms in the United States. J. Climate, 28, 24432458, https://doi.org/10.1175/JCLI-D-14-00382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015b: Why does tropical convective available potential energy (CAPE) increase with warming? Geophys. Res. Lett., 42, 10 42910 437, https://doi.org/10.1002/2015GL066199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiu, C. J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, https://doi.org/10.1029/2012GL052762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative convective equilibrium. Geophys. Res. Lett., 40, 43984403, https://doi.org/10.1002/grl.50796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422444, https://doi.org/10.1175/1520-0493(2004)132<0422:LMADCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, https://doi.org/10.1175/JCLI4263.1.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., A. Dai, C. Mears, and L. Zhang, 2016: Global water vapor trend from 1988–2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements. J. Climate, 29, 52055222, https://doi.org/10.1175/JCLI-D-15-0485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, https://doi.org/10.1029/2001JD001005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 30 30 14
Full Text Views 8 8 6
PDF Downloads 16 16 12

Linkage between Projected Precipitation and Atmospheric Thermodynamic Changes

View More View Less
  • 1 School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • 2 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and The National Center for Atmospheric Research, Boulder, Colorado
  • 3 School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

Light–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h−1) but increased heavy precipitation (P > 1 mm h−1) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate.

Corresponding author: Dr. Aiguo Dai, adai@albany.edu

Abstract

Light–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h−1) but increased heavy precipitation (P > 1 mm h−1) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate.

Corresponding author: Dr. Aiguo Dai, adai@albany.edu
Save