• Agosta, C., and Coauthors, 2019: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 13, 281296, https://doi.org/10.5194/tc-13-281-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlstrøm, A. P., D. Petersen, P. L. Langen, M. Citterio, and J. E. Box, 2017: Abrupt shift in the observed runoff from the southwestern Greenland ice sheet. Sci. Adv., 3, e1701169, https://doi.org/10.1126/sciadv.1701169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, P. M., M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke, 2014: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013). Cryosphere, 8, 22932312, https://doi.org/10.5194/tc-8-2293-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, P. M., A. N. LeGrande, E. Fischer, M. Tedesco, X. Fettweis, M. Kelley, S. M. J. Nowicki, and G. A. Schmidt, 2019: Simulated Greenland surface mass balance in the GISS ModelE2 GCM: Role of the ice sheet surface. J. Geophys. Res. Earth, 124, 750765, https://doi.org/10.1029/2018JF004772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auger, J. D., S. D. Birkel, K. A. Maasch, P. A. Mayewski, and K. C. Schuenemann, 2017: Examination of precipitation variability in southern Greenland. J. Geophys. Res. Atmos., 122, 62026216, https://doi.org/10.1002/2016JD026377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C., S. Lee, and S. Feldstein, 2016: An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming. J. Atmos. Sci., 73, 43294347, https://doi.org/10.1175/JAS-D-16-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballinger, T. J., and Coauthors, 2019: Greenland Ice Sheet late-season melt: Investigating multiscale drivers of K-transect events. Cryosphere, 13, 22412257, https://doi.org/10.5194/tc-13-2241-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., R. M. Westaway, B. Marzeion, and B. Wouters, 2018: The land ice contribution to sea level during the satellite era. Environ. Res. Lett., 13, 063008, https://doi.org/10.1088/1748-9326/aac2f0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, https://doi.org/10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berdahl, M., and Coauthors, 2018: Southeast Greenland winter precipitation strongly linked to the Icelandic low position. J. Climate, 31, 44834500, https://doi.org/10.1175/JCLI-D-17-0622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonne, J.-L., and Coauthors, 2015: The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. J. Geophys. Res. Atmos., 120, 29702989, https://doi.org/10.1002/2014JD022602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen, 2012: Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821839, https://doi.org/10.5194/tc-6-821-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos., 123, 38713892, https://doi.org/10.1002/2017JD027796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braithwaite, R. J., and O. B. Olesen, 1990: Response of the energy balance on the margin of the Greenland Ice Sheet to temperature changes. J. Glaciol., 36, 217221, https://doi.org/10.1017/S0022143000009461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calov, R., and Coauthors, 2018: Simulation of the future sea level contribution of Greenland with a new glacial system model. Cryosphere, 12, 30973121, https://doi.org/10.5194/tc-12-3097-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charalampidis, C., and Coauthors, 2015: Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. Cryosphere, 9, 21632181, https://doi.org/10.5194/tc-9-2163-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., D. H. Bromwich, and L. Bai, 1997: Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Climate, 10, 839870, https://doi.org/10.1175/1520-0442(1997)010<0839:POGRBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), accessed 9 May 2019, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Cullather, R. I., and S. M. J. Nowicki, 2018: Greenland Ice Sheet surface melt and its relation to daily atmospheric conditions. J. Climate, 31, 18971919, https://doi.org/10.1175/JCLI-D-17-0447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhasse, A., X. Fettweis, C. Kittel, C. Amory, and C. Agosta, 2018: Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere, 12, 34093418, https://doi.org/10.5194/tc-12-3409-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delhasse, A., C. Kittel, C. Amory, S. Hofer, D. van As, R. S. Fausto, and X. Fettweis, 2020: Brief communication: Evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet. Cryosphere, 14, 957965, https://doi.org/10.5194/tc-14-957-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Ridder, K., and G. Schayes, 1997: The IAGL land surface model. J. Appl. Meteor., 36, 167182, https://doi.org/10.1175/1520-0450(1997)036<0167:TILSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Ridder, K., and H. Gallée, 1998: Land surface-induced regional climate change in southern Israel. J. Appl. Meteor., 37, 14701485, https://doi.org/10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, S. H., and Coauthors, 2015: Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci., 8, 647653, https://doi.org/10.1038/ngeo2482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fausto, R. S., D. van As, J. E. Box, W. Colgan, and P. L. Langen, 2016a: Quantifying the surface energy fluxes in South Greenland during the 2012 high melt episodes using In-situ observations. Front. Earth Sci., 4, 82, https://doi.org/10.3389/feart.2016.00082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fausto, R. S., D. van As, J. E. Box, W. Colgan, P. L. Langen, and R. H. Mottram, 2016b: The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophys. Res. Lett., 43, 26492658, https://doi.org/10.1002/2016GL067720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fettweis, X., E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallée, 2013: Brief communication: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere, 7, 241248, https://doi.org/10.5194/tc-7-241-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fettweis, X., and Coauthors, 2017: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere, 11, 10151033, https://doi.org/10.5194/tc-11-1015-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fettweis, X., and Coauthors, 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice sheet. Cryosphere Discuss., https://doi.org/10.5194/tc-2019-321, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 34253445, https://doi.org/10.1175/MWR-D-13-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franco, B., X. Fettweis, and M. Erpicum, 2013: Future projections of the Greenland ice sheet energy balance driving the surface melt. Cryosphere, 7, 118, https://doi.org/10.5194/tc-7-1-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallagher, M. R., M. D. Shupe, and N. B. Miller, 2018: Impact of atmospheric circulation on temperature, clouds, and radiation at Summit Station, Greenland, with self-organizing maps. J. Climate, 31, 88958915, https://doi.org/10.1175/JCLI-D-17-0893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., and G. Schayes, 1994: Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Wea. Rev., 122, 671685, https://doi.org/10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., 33, 862880, https://doi.org/10.1002/joc.3475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., X. Fettweis, and R. J. Hall, 2018a: Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models. Cryosphere, 12, 32873292, https://doi.org/10.5194/tc-12-3287-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., R. J. Hall, T. E. Cropper, T. J. Ballinger, L. Wake, T. Mote, and J. Cappelen, 2018b: Greenland blocking index daily series 1851–2015: Analysis of changes in extremes and links with North Atlantic and UK climate variability and change. Int. J. Climatol., 38, 35463564, https://doi.org/10.1002/joc.5516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2020: Mass balance of the ice sheets and glaciers—Progress since AR5 and challenges. Earth-Sci. Rev., 201, 976, https://doi.org/10.1016/j.earscirev.2019.102976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinemann, G., and U. Falk, 2002: Surface winds and energy fluxes near the Greenland ice margin under conditions of katabatic winds. Polarforschung, 71, 1531.

    • Search Google Scholar
    • Export Citation
  • Hermann, M., and Coauthors, 2018: Application of PROMICE Q-transect in situ accumulation and ablation measurements (2000–2017) to constrain mass balance at the southern tip of the Greenland ice sheet. J. Geophys. Res. Earth, 123, 12351256, https://doi.org/10.1029/2017JF004408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv., 3, e1700584, https://doi.org/10.1126/SCIADV.1700584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2019: Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Climate Change, 9, 523528, https://doi.org/10.1038/s41558-019-0507-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015GL064672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., K. Van Tricht, S. Lhermitte, and T. S. L’Ecuyer, 2017: Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophys. Res. Lett., 44, 33553364, https://doi.org/10.1002/2016GL072242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., T. Sabaka, B. Loomis, A. Arendt, J. McCarthy, and J. Camp, 2013: Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59, 613631, https://doi.org/10.3189/2013JoG12J147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattingly, K. S., C. A. Ramseyer, J. J. Rosen, T. L. Mote, and R. Muthyala, 2016: Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett., 43, 92509258, https://doi.org/10.1002/2016GL070424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattingly, K. S., T. L. Mote, and X. Fettweis, 2018: Atmospheric river impacts on Greenland Ice Sheet surface mass balance. J. Geophys. Res. Atmos., 123, 85388560, https://doi.org/10.1029/2018JD028714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlhattan, E. A., T. S. L’Ecuyer, and N. B. Miller, 2017: Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes. J. Climate, 30, 44774495, https://doi.org/10.1175/JCLI-D-16-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlhattan, E. A., C. Pettersen, N. B. Wood, and T. S. L’Ecuyer, 2019: Satellite observations of snowfall regimes over the Greenland Ice Sheet. Cryosphere Discuss., https://doi.org/10.5194/tc-2019-223, in press.

    • Search Google Scholar
    • Export Citation
  • McLeod, J. T., and T. L. Mote, 2015: Assessing the role of precursor cyclones on the formation of extreme Greenland blocking episodes and their impact on summer melting across the Greenland ice sheet. J. Geophys. Res. Atmos., 120, 12 35712 377, https://doi.org/10.1002/2015JD023945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLeod, J. T., and T. L. Mote, 2016: Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. Int. J. Climatol., 36, 14841499, https://doi.org/10.1002/joc.4440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meesters, A., 1994: Dependence of the energy balance of the Greenland ice sheet on climate change: Influence of katabatic wind and tundra. Quart. J. Roy. Meteor. Soc., 120, 491517, https://doi.org/10.1002/qj.49712051702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. B., M. D. Shupe, C. J. Cox, V. P. Walden, D. D. Turner, and K. Steffen, 2015: Cloud radiative forcing at Summit, Greenland. J. Climate, 28, 62676280, https://doi.org/10.1175/JCLI-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. B., M. D. Shupe, C. J. Cox, D. Noone, P. O. G. Persson, and K. Steffen, 2017: Surface energy budget responses to radiative forcing at Summit, Greenland. Cryosphere, 11, 497516, https://doi.org/10.5194/tc-11-497-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., and T. L. Mote, 2018: Characterizing severe weather potential in synoptically weakly forced thunderstorm environments. Nat. Hazards Earth Syst. Sci., 18, 12611277, https://doi.org/10.5194/nhess-18-1261-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., I. A. Renfrew, and J. J. Cassano, 2013: Greenland plateau jets. Tellus, 65A, 17468, https://doi.org/10.3402/tellusa.v65i0.17468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 92399244, https://doi.org/10.1073/pnas.1904242116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016a: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and K. M. Nardi, 2016b: Modulation of atmospheric rivers near Alaska and the U.S. West Coast by northeast Pacific height anomalies. J. Geophys. Res. Atmos., 121, 12 75112 765, https://doi.org/10.1002/2016JD025350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, W., G. P. Compo, F. Martin Ralph, and M. D. Shupe, 2014: Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. J. Geophys. Res. Atmos., 119, 65206536, https://doi.org/10.1002/2014JD021470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nghiem, S., and Coauthors, 2012: The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun., 8, 15799, https://doi.org/10.1038/ncomms15799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwano, M., A. Hashimoto, and T. Aoki, 2019: Cloud-driven modulations of Greenland ice sheet surface melt. Sci. Rep., 9, 10380, https://doi.org/10.1038/s41598-019-46152-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, B., W. J. van de Berg, E. van Meijgaard, P. Kuipers Munneke, R. S. W. van de Wal, and M. R. van den Broeke, 2015: Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland ice sheet. Cryosphere, 9, 18311844, https://doi.org/10.5194/tc-9-1831-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, B., W. J. van de Berg, S. Lhermitte, and M. R. van den Broeke, 2019: Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oltmanns, M., F. Straneo, and M. Tedesco, 2019: Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions. Cryosphere, 13, 815825, https://doi.org/10.5194/tc-13-815-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 1989: Instrumented aircraft observations of the katabatic wind regime near Terra Nova Bay. Mon. Wea. Rev., 117, 15701585, https://doi.org/10.1175/1520-0493(1989)117<1570:IAOOTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, C., R. Bennartz, M. S. Kulie, A. J. Merrelli, M. D. Shupe, and D. D. Turner, 2016: Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland. Atmos. Chem. Phys., 16, 47434756, https://doi.org/10.5194/acp-16-4743-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersen, C., R. Bennartz, A. J. Merrelli, M. D. Shupe, D. D. Turner, and V. P. Walden, 2018: Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations. Atmos. Chem. Phys., 18, 47154735, https://doi.org/10.5194/acp-18-4715-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rae, J. G. L., and Coauthors, 2012: Greenland ice sheet surface mass balance: Evaluating simulations and making projections with regional climate models. Cryosphere, 6, 12751294, https://doi.org/10.5194/tc-6-1275-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewicz, J., and S. J. Marshall, 2014: Variability and trends in anticyclonic circulation over the Greenland ice sheet, 1948–2013. Geophys. Res. Lett., 41, 28422850, https://doi.org/10.1002/2014GL059255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rückamp, M., U. Falk, S. Lange, K. Frieler, and A. Humbert, 2018: The effect of overshooting 1.5°C global warming on the mass loss of the Greenland ice sheet. Earth Syst. Dyn., 9, 11691189, https://doi.org/10.5194/esd-9-1169-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2020: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233239, https://doi.org/10.1038/s41586-019-1855-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186, https://doi.org/10.1175/BAMS-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, A. Donohoe, and P. J. Rasch, 2017: A source-receptor perspective on the polar hydrologic cycle: Sources, seasonality, and Arctic–Antarctic parity in the hydrologic cycle response to CO2 doubling. J. Climate, 30, 999910 017, https://doi.org/10.1175/JCLI-D-16-0917.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeets, C. J. P. P., and M. R. van den Broeke, 2008: Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Bound.-Layer Meteor., 128, 315338, https://doi.org/10.1007/s10546-008-9291-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, and N. B. Miller, 2017: Cloud–atmospheric boundary layer–surface interactions on the Greenland Ice Sheet during the July 2012 extreme melt event. J. Climate, 30, 32373252, https://doi.org/10.1175/JCLI-D-16-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutterley, T. C., I. Velicogna, X. Fettweis, E. Rignot, B. Noël, and M. van den Broeke, 2018: Evaluation of reconstructions of snow/ice melt in Greenland by regional atmospheric climate models using laser altimetry data. Geophys. Res. Lett., 45, 83248333, https://doi.org/10.1029/2018GL078645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., S. Doherty, X. Fettweis, P. Alexander, J. Jeyaratnam, and J. Stroeve, 2016: The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100). Cryosphere, 10, 477496, https://doi.org/10.5194/tc-10-477-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE T. Geosci. Remote, 45, 36803690, https://doi.org/10.1109/TGRS.2007.903703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Välisuo, I., T. Vihma, R. Pirazzini, and M. Schäfer, 2018: Interannual variability of atmospheric conditions and surface melt in Greenland in 2000–2014. J. Geophys. Res. Atmos., 123, 10 44310 463, https://doi.org/10.1029/2018JD028445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Angelen, J. H., M. R. van den Broeke, and W. J. van de Berg, 2011: Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas. J. Geophys. Res., 116, D10101, https://doi.org/10.1029/2010JD015485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van As, D., 2011: Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland. J. Glaciol., 57, 208220, https://doi.org/10.3189/002214311796405898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van As, D., and Coauthors, 2011: Programme for Monitoring of the Greenland Ice Sheet (PROMICE): First temperature and ablation record. Geol. Surv. Denmark Greenl. Bull., 23, 7376, https://doi.org/10.34194/geusb.v23.4876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van As, D., A. L. Hubbard, B. Hasholt, A. B. Mikkelsen, M. R. van den Broeke, and R. S. Fausto, 2012: Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere, 6, 199209, https://doi.org/10.5194/tc-6-199-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van As, D., and Coauthors, 2013: Darkening of the Greenland ice sheet due to the melt-albedo feedback observed at PROMICE weather stations. Geol. Surv. Denmark Greenl. Bull., 28, 6972, https://doi.org/10.34194/geusb.v28.4728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and H. Gallée, 1996: Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Quart. J. Roy. Meteor. Soc., 122, 13651383, https://doi.org/10.1002/qj.49712253407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., P. Duynkerke, and J. Oerlemans, 1994: The observed katabatic flow at the edge of the Greenland ice sheet during GIMEX-91. Global Planet. Change, 9, 315, https://doi.org/10.1016/0921-8181(94)90003-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., E. M. Enderlin, I. M. Howat, P. Kuipers Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters, 2016: On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere, 10, 19331946, https://doi.org/10.5194/tc-10-1933-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and Coauthors, 2017: Greenland Ice Sheet surface mass loss: Recent developments in observation and modeling. Curr. Climate Change Rep., 3, 345356, https://doi.org/10.1007/s40641-017-0084-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and Coauthors, 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Nath, W. Chen, and L. Wang, 2019: Recent strengthening of Greenland blocking drives summertime surface warming over northern Canada and eastern Siberia. J. Climate, 32, 32633278, https://doi.org/10.1175/JCLI-D-18-0410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., C. S. Zender, and D. van As, 2018: Temporal characteristics of cloud radiative effects on the Greenland Ice Sheet: Discoveries from multiyear automatic weather station measurements. J. Geophys. Res. Atmos., 123, 11 34811 361, https://doi.org/10.1029/2018JD028540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., C. S. Zender, D. van As, and N. B. Miller, 2019: Spatial distribution of melt season cloud radiative effects over Greenland: Evaluating satellite observations, reanalyses, and model simulations against in situ measurements. J. Geophys. Res. Atmos., 124, 5771, https://doi.org/10.1029/2018JD028919.

    • Search Google Scholar
    • Export Citation
  • Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci., 12, 911916, https://doi.org/10.1038/s41561-019-0460-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117 117 81
Full Text Views 35 35 15
PDF Downloads 37 37 19

Strong Summer Atmospheric Rivers Trigger Greenland Ice Sheet Melt through Spatially Varying Surface Energy Balance and Cloud Regimes

View More View Less
  • 1 Climatology Research Laboratory, Department of Geography, University of Georgia, Athens, Georgia
  • 2 Laboratory of Climatology, Department of Geography, University of Liège, Liège, Belgium
  • 3 Geological Survey of Denmark and Greenland, Copenhagen, Denmark
  • 4 VITO Remote Sensing, Mol, Belgium
  • 5 Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands
  • 6 Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

ABSTRACT

Mass loss from the Greenland Ice Sheet (GrIS) has accelerated over the past two decades, coincident with rapid Arctic warming and increasing moisture transport over Greenland by atmospheric rivers (ARs). Summer ARs affecting western Greenland trigger GrIS melt events, but the physical mechanisms through which ARs induce melt are not well understood. This study elucidates the coupled surface–atmosphere processes by which ARs force GrIS melt through analysis of the surface energy balance (SEB), cloud properties, and local- to synoptic-scale atmospheric conditions during strong summer AR events affecting western Greenland. ARs are identified in MERRA-2 reanalysis (1980–2017) and classified by integrated water vapor transport (IVT) intensity. SEB, cloud, and atmospheric data from regional climate model, observational, reanalysis, and satellite-based datasets are used to analyze melt-inducing physical processes during strong, >90th percentile “AR90+” events. Near AR “landfall,” AR90+ days feature increased cloud cover that reduces net shortwave radiation and increases net longwave radiation. As these oppositely signed radiative anomalies partly cancel during AR90+ events, increased melt energy in the ablation zone is primarily provided by turbulent heat fluxes, particularly sensible heat flux. These turbulent heat fluxes are driven by enhanced barrier winds generated by a stronger synoptic pressure gradient combined with an enhanced local temperature contrast between cool over-ice air and the anomalously warm surrounding atmosphere. During AR90+ events in northwest Greenland, anomalous melt is forced remotely through a clear-sky foehn regime produced by downslope flow in eastern Greenland.

Current affiliation: Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey.

Corresponding author: Kyle S. Mattingly, kyle.mattingly@rutgers.edu

ABSTRACT

Mass loss from the Greenland Ice Sheet (GrIS) has accelerated over the past two decades, coincident with rapid Arctic warming and increasing moisture transport over Greenland by atmospheric rivers (ARs). Summer ARs affecting western Greenland trigger GrIS melt events, but the physical mechanisms through which ARs induce melt are not well understood. This study elucidates the coupled surface–atmosphere processes by which ARs force GrIS melt through analysis of the surface energy balance (SEB), cloud properties, and local- to synoptic-scale atmospheric conditions during strong summer AR events affecting western Greenland. ARs are identified in MERRA-2 reanalysis (1980–2017) and classified by integrated water vapor transport (IVT) intensity. SEB, cloud, and atmospheric data from regional climate model, observational, reanalysis, and satellite-based datasets are used to analyze melt-inducing physical processes during strong, >90th percentile “AR90+” events. Near AR “landfall,” AR90+ days feature increased cloud cover that reduces net shortwave radiation and increases net longwave radiation. As these oppositely signed radiative anomalies partly cancel during AR90+ events, increased melt energy in the ablation zone is primarily provided by turbulent heat fluxes, particularly sensible heat flux. These turbulent heat fluxes are driven by enhanced barrier winds generated by a stronger synoptic pressure gradient combined with an enhanced local temperature contrast between cool over-ice air and the anomalously warm surrounding atmosphere. During AR90+ events in northwest Greenland, anomalous melt is forced remotely through a clear-sky foehn regime produced by downslope flow in eastern Greenland.

Current affiliation: Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey.

Corresponding author: Kyle S. Mattingly, kyle.mattingly@rutgers.edu
Save